Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Linking With The Future

08.07.2004


Exploring and using space is the biggest adventure facing mankind. Finding innovative ways for ESA to continue doing this is the role of the Advanced Concepts Team (ACT) at ESA’s European Space Technology Research Centre (ESTEC).

It is their job to look into the future and identify ideas which could enable missions that currently sound like science fiction.

From simple “what if?” ideas, the ACT evaluate what is and is not possible. For example, among many other proposals, they are currently investigating the feasibility of satellites to generate electricity from sunlight and beam it to Earth, systems for generating fuel from human waste, and robots that would move like tumbleweed across planetary surfaces.



The ACT was inaugurated in 2002 and is part of ESA’s General Studies Programme. It forms the essential interface between ESA and the academics, in universities around Europe, who are working on the kind of theoretical research that may one day have applications in space missions.

“There are many people out there in universities working on potential breakthroughs. Every day, it seems, someone proposes a new idea. We need to find the ideas that might help ESA in future,” says Andrés Gálvez, head of the ACT.

Sometimes the work in research groups is so theoretical that it might require several decades or more of technological development to make it practical. That would stop most space engineers from considering it. “Most people at ESA are very busy working on missions that have set launch dates, so they have no time to work on ideas that may be used on a mission thirty years in the future. That’s why there is the ACT to do these tasks,” says Gálvez.

To help determine which ideas are worth pursuing, the ACT run Ariadna, a scheme that allows academics to propose totally new ideas for study and tests for ideas that the team already have under investigation. In both cases, the resultant studies last between 2 and 6 months, providing a quick, expert evaluation of an idea. If it is found to have a fundamental flaw, it can be discounted straight away, without having drained too much time or money.

Ariadna is named after the daughter of King Minos who, in Greek mythology, gave Theseus the ball of thread that enabled him to find his way out of the labyrinth. The analogy is easy to see: the ACT provides the way for ESA to find the correct path through all the theoretical science that is generated in offices and laboratories around Europe.

The team is composed of young researchers, who each spend one or two years bringing energy and enthusiasm to the thinking. Among the projects they are currently working on are: the technological requirements of nuclear propulsion and missions it might lead to, such as a spacecraft to orbit Pluto; the extreme difficulty of building an antimatter engine; the best routes for interstellar spacecraft to take between stars; the possibility of nudging dangerous asteroids. Perhaps the most extreme example of work the group is doing is to look at the biology of hibernation in mammals and wonder whether such a state could be induced in humans on deep space voyages.

The final report on each study provides the General Studies Programme with a basis on which to select ideas for further investigation.

Andrés Galvez | alfa
Further information:
http://www.esa.int

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>