Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Science Fiction Into Fact

07.07.2004


In the future, our computers no longer crash as we try and download pictures that are too heavy in memory, our cars no longer pollute the atmosphere and cancer could be dealt with by a visit to the GP. Some of it, at least, will happen thanks to cutting edge research happening now at the University of Leicester Department of Physics and Astronomy.

Here scientists are among a handful across the world helping to turn science fiction into a fact of the future through the science of nanotechnology.

Their work relates to the miniscule -smaller than a grain of talcum powder - in the realms of one thousand millionth of a metre in size. At the other end of the spectrum they are concerned with computer memories thousands of times more powerful than they are now; potential new ways of targeting cancer cells too small or fragmented to be identified with current technology; hugely enhanced mobile phone batteries; and safe, effective ways of storing fuel for hydrogen cars.



This is all in the realms of the future, but when, one day, it ceases to be the stuff of science fiction and becomes scientific fact, then that will be because of research in just a handful of laboratories worldwide, one of which is at the University of Leicester.

Chris Binns, Professor of Nanoscience at the University, explained some of the projects he and his research team are working on:

“Our main current research is the properties of nano-particles of 10-1000 atoms, just one or two nanometres across. What is interesting about them is that they show us how matter is developed, how properties change as a result of the number of atoms in a cluster. Clusters of atoms have characteristics that are different from the atoms themselves, and they become giant artificial atoms whose properties you can change.”

Recently Professor Binns has been looking at ways of making materials out of these clusters. “We start with designer atoms and build materials out of them. Taking them in gas form, we can make clusters and coat surfaces. The material they make is very different because the clusters retain a memory of their novel properties in the gas phase.”

With major funding from the magnetic recording industry, in particular Seagate, Leicester researchers are working on the production of a material that is more magnetic than anything available at the moment. “The most magnetic material today has been around for about a century,” Chris Binns said. “We think the clusters we are working on may produce something that is far more magnetic. The thing that limits magnetic recording is the write head. The effectiveness of this is constrained by the degree of magnetism between the write head and the surface it links to. If we can come up with much higher magnetism then computer disks could become much more powerful.

As far as breaking the record for the most magnetic material is concerned this is the only game in town.”

Looking to the future, the Leicester research team, in collaboration with Dr Ellis and Dr Wheeler in the Chemistry department, has recently applied for funding to develop even more sophisticated clusters. In what Professor Binns calls “nanocluster onions”, they will produce a core containing tens to hundreds of atoms, around which they will grow sophisticated shells that would not occur in nature.

The applications for this branch of nanotechnology are enormous. “If we can achieve this, it will allow us to produce particles using nanotechnology for cancer diagnosis. We could attach antibodies for tumours to the clusters and inject them into the body, and they would find the tumour and kill the tumour cells. This is very exciting stuff. The clusters would be able to detect tumours too small to see, including tumours that have dispersed.

“Potentially you could go to your GP, be injected with these clusters and then walk through something like an airport security arch, and any cancer cells in your body could be located and dealt with.”

In three or four years Professor Binns hopes they will be able to get suspensions of the clusters in solution. Then they have to attach biological particles to the clusters. He is, however, optimistic about this stage. “This has already been done. The problems will come in the medical field. How would it work in the body? What side effects might there be?”

Core-Shell cluster technology also has applications for the mobile phone battery, as well as for magnetic recording of the future. Computer memory that currently requires a surface of 100 x 100 nanometres could, using shell technology, be stored on a single particle of 2 x 2 nanometres, multiplying the total memory by a factor of 1000.

It may also change motoring of the future. The move is increasing to get away from petrol-fuelled cars. Hydrogen is a clean, non-polluting fuel, which can be obtained from anything as simple as sea water. The problem is in storing it. In gas form it would have to be stored in huge cylinders too heavy for a car to tow. In liquid form it is too dangerous for general consumption. Using nanotechnology, you could store enough hydrogen as a gas in a “metal sponge” weighing a few kilogrammes to power a car over the same distance as a conventional petrol tank.

“These are all real possibilities for the future,” Professor Binns said, “though for some of them we are looking decades ahead.”

There is, however, no harm in dreaming of such a future, when our computers no longer crash as we try and download pictures that are too heavy in memory, when our cars no longer pollute the atmosphere and when cancer can be dealt with by a visit to the GP. Some of it, at least, will happen.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>