Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turning Science Fiction Into Fact

07.07.2004


In the future, our computers no longer crash as we try and download pictures that are too heavy in memory, our cars no longer pollute the atmosphere and cancer could be dealt with by a visit to the GP. Some of it, at least, will happen thanks to cutting edge research happening now at the University of Leicester Department of Physics and Astronomy.

Here scientists are among a handful across the world helping to turn science fiction into a fact of the future through the science of nanotechnology.

Their work relates to the miniscule -smaller than a grain of talcum powder - in the realms of one thousand millionth of a metre in size. At the other end of the spectrum they are concerned with computer memories thousands of times more powerful than they are now; potential new ways of targeting cancer cells too small or fragmented to be identified with current technology; hugely enhanced mobile phone batteries; and safe, effective ways of storing fuel for hydrogen cars.



This is all in the realms of the future, but when, one day, it ceases to be the stuff of science fiction and becomes scientific fact, then that will be because of research in just a handful of laboratories worldwide, one of which is at the University of Leicester.

Chris Binns, Professor of Nanoscience at the University, explained some of the projects he and his research team are working on:

“Our main current research is the properties of nano-particles of 10-1000 atoms, just one or two nanometres across. What is interesting about them is that they show us how matter is developed, how properties change as a result of the number of atoms in a cluster. Clusters of atoms have characteristics that are different from the atoms themselves, and they become giant artificial atoms whose properties you can change.”

Recently Professor Binns has been looking at ways of making materials out of these clusters. “We start with designer atoms and build materials out of them. Taking them in gas form, we can make clusters and coat surfaces. The material they make is very different because the clusters retain a memory of their novel properties in the gas phase.”

With major funding from the magnetic recording industry, in particular Seagate, Leicester researchers are working on the production of a material that is more magnetic than anything available at the moment. “The most magnetic material today has been around for about a century,” Chris Binns said. “We think the clusters we are working on may produce something that is far more magnetic. The thing that limits magnetic recording is the write head. The effectiveness of this is constrained by the degree of magnetism between the write head and the surface it links to. If we can come up with much higher magnetism then computer disks could become much more powerful.

As far as breaking the record for the most magnetic material is concerned this is the only game in town.”

Looking to the future, the Leicester research team, in collaboration with Dr Ellis and Dr Wheeler in the Chemistry department, has recently applied for funding to develop even more sophisticated clusters. In what Professor Binns calls “nanocluster onions”, they will produce a core containing tens to hundreds of atoms, around which they will grow sophisticated shells that would not occur in nature.

The applications for this branch of nanotechnology are enormous. “If we can achieve this, it will allow us to produce particles using nanotechnology for cancer diagnosis. We could attach antibodies for tumours to the clusters and inject them into the body, and they would find the tumour and kill the tumour cells. This is very exciting stuff. The clusters would be able to detect tumours too small to see, including tumours that have dispersed.

“Potentially you could go to your GP, be injected with these clusters and then walk through something like an airport security arch, and any cancer cells in your body could be located and dealt with.”

In three or four years Professor Binns hopes they will be able to get suspensions of the clusters in solution. Then they have to attach biological particles to the clusters. He is, however, optimistic about this stage. “This has already been done. The problems will come in the medical field. How would it work in the body? What side effects might there be?”

Core-Shell cluster technology also has applications for the mobile phone battery, as well as for magnetic recording of the future. Computer memory that currently requires a surface of 100 x 100 nanometres could, using shell technology, be stored on a single particle of 2 x 2 nanometres, multiplying the total memory by a factor of 1000.

It may also change motoring of the future. The move is increasing to get away from petrol-fuelled cars. Hydrogen is a clean, non-polluting fuel, which can be obtained from anything as simple as sea water. The problem is in storing it. In gas form it would have to be stored in huge cylinders too heavy for a car to tow. In liquid form it is too dangerous for general consumption. Using nanotechnology, you could store enough hydrogen as a gas in a “metal sponge” weighing a few kilogrammes to power a car over the same distance as a conventional petrol tank.

“These are all real possibilities for the future,” Professor Binns said, “though for some of them we are looking decades ahead.”

There is, however, no harm in dreaming of such a future, when our computers no longer crash as we try and download pictures that are too heavy in memory, when our cars no longer pollute the atmosphere and when cancer can be dealt with by a visit to the GP. Some of it, at least, will happen.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Physics and Astronomy:

nachricht Subnano lead particles show peculiar decay behavior
25.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

nachricht Getting electrons to move in a semiconductor
25.04.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>