Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado instruments approach Saturn aboard Cassini spacecraft

23.06.2004


NASA’s Cassini-Huygens spacecraft carrying a $12.5 million University of Colorado at Boulder instrument package is expected to enter Saturn’s orbit June 30, beginning a four-year mission to probe the planet, its fabulous ring system and bizarre moons.
Launched Oct. 15, 1997 from Cape Canaveral, Fla., the NASA spacecraft has traveled more than 2 billion miles during a roundabout, 6.7-year journey to the ringed planet. The most ambitious planetary mission ever, the $3 billion international project is managed by the Jet Propulsion Laboratory in Pasadena, Calif.

The Cassini orbiter is equipped with 12 scientific instruments and the deployable Huygens probe, which is carrying six instruments that will parachute into the thick atmosphere of Titan, Saturn’s largest and most intriguing moon.


"I’m looking forward to this encounter, and I am more eager than anxious," said Professor Larry Esposito of the Laboratory for Atmospheric and Space Physics, team leader for the Ultraviolet Imaging Spectrograph, or UVIS. "I don’t have the time or energy to worry about things that are out of my control."

Although the spacecraft has been taking data on Saturn since late in 2003, the first major order of business is to successfully enter Saturn’s orbit June 30, he said. Cassini is expected to slow enough to be captured into Saturn’s orbit, passing through a gap between the F-Ring -- which Esposito discovered in 1979 while analyzing data from Pioneer 11 as it passed by Saturn -- and the G-Ring.

The UVIS instrument package has a set of telescopes to measure UV light reflected by or emitted from Saturn’s atmosphere, its rings and its moon atmospheres and surfaces, he said. The data collected can determine their compositions, distribution, aerosol content and temperatures.

"Saturn is surrounded by a huge cloud of hydrogen gas that is leaking out of the top of its atmosphere," he said. "Our team hopes to learn more about the energetic processes that create the cloud."

UVIS also includes a high-speed photometer to determine the radial structure and dynamics of the ring system by measuring fluctuations of distant starlight passing through the rings and ring gaps, known as stellar occultation. "We will conduct 60 star occultations in October at up to 10 times the highest resolution and 50 times the sensitivity we measured during the Voyager 2 flyby," Esposito said.

The rings are "incredibly active, exhibiting waves, wakes, ripples, bends and kinks" that seem to wax and wane over time, he said. The rings’ waves, which appear to be tied to gravitational tugs from Saturn’s inner satellites, can spiral somewhat like the grooves in a phonograph record or ripple like waves on a pond.

The F-Ring discovered by Esposito is a braided and kinked object located just outside the main rings visible from Earth. The exotic ring appears to be held in place by two "shepherd" satellites, Pandora and Prometheus, Esposito said.

"Saturn’s rings have a violent history and appear to have been created by the break-up of small moons in the recent past," he said. "We are fairly certain the ring particles consist of ice and rock ranging in size from sugar granules to houses."

The researchers hope to resolve how gravity, magnetic energy and other forces hold the enigmatic rings together. The main ring system -- which Esposito said is so large it would barely fit in the space between Earth and its moon -- should provide "a local lab of sorts to help us understand similar phenomenon in our larger astrophysical system like accretion discs around black holes."

The UVIS science and engineering team also includes CU-Boulder co-investigators George Lawrence, Bill McClintock, Charles Barth, Ian Stewart and Josh Colwell. It also includes Justin Maki, a 1996 CU-Boulder graduate now at JPL.

The spacecraft will spend four years orbiting Saturn, including 69 close encounters of seven of the planet’s 31 known moons. The primary focus of the moon encounters will be Titan, which will be the recipient of 45 flybys and where the spacecraft will release the Huygens probe to its surface on Christmas Eve.

The probe will freefall for 20 days, then parachute into Titan’s atmosphere and commence 2.5 hours of intensive data collection, transmitting information back to the Cassini orbiter. The data then will be relayed to Earth ground stations.

In addition to taking "chemical fingerprints" of Saturn’s gases and measuring their temperatures and compositions, LASP’s UVIS team is particularly interested in the atmosphere of Titan. Titan is the only solar system body other than Earth that is rich in nitrogen, he said.

"When Voyager flew by Titan in 1980, some thought there might be a chance to detect evidence of life there," said Esposito, also a professor in CU’s astrophysical and planetary sciences department. Even though Titan’s temperature was later measured at a frigid minus 290 F -- dashing most hopes for life -- many scientists believe it may resemble a primordial Earth.

Titan’s surface may contain lakes of liquid methane and ethane, and organic molecules may constantly be raining down from the moon’s thick clouds onto its surface.

"We plan to measure the composition of Titan’s clouds in order to understand their chemistry and how they cool or warm the moon," said Esposito.

"Titan is almost like a little world," he said. "We should be able to look back in time and see what types of pre-biological chemistry are occurring."

LASP has been building ultraviolet spectrometers for NASA since the Mars missions in the mid-1960s, said Esposito. "The main thing we have learned from our planetary exploration experience is that there will always be surprises and serendipitous discoveries."

CU’s UVIS package also contains a hydrogen-deuterium absorption cell designed and built with the participation of the Max Plank Institute of Lindau, Germany. Since all the universe’s deuterium -- a heavy form of hydrogen -- is thought to have formed during the big bang, the ratio of the two elements should shed light on the solar system’s earliest history.

Cassini was launched on a Titan IV/Centaur rocket built by Lockheed Martin engineers in Colorado, who also built the spacecraft’s main engine, 16 thrusters, and assembled a camera that will ride on the Huygens probe.

The Cassini effort is a very intensive, four-year mission," said Esposito. "We can investigate, ask new questions and reprogram our spacecraft orbits to answer them. The magnitude of discoveries on this mission will be tremendous."

Larry Esposito | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>