Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chandra turns up the heat in the Milky Way center

23.06.2004


Chandra image of the Milky Way Center (NASA/CXC/UCLA/M. Muno et al.)


NASA’s Chandra X-ray Observatory has revealed new evidence that extremely hot gas exists in a large region at the Milky Way’s center. The discovery came to light as a team of astronomers used Chandra’s unique resolving power to study a region about 100 light years across. The Marshall Center manages the Chandra program.

A long look by NASA’s Chandra X-ray Observatory has revealed new evidence that extremely hot gas exists in a large region at the center of the Milky Way. The intensity and spectrum of the high-energy X-rays produced by this gas present a puzzle as to how it is being heated.

The discovery came to light as a team of astronomers, led by Michael Muno of UCLA used Chandra’s unique resolving power to study a region about 100 light years across and painstakingly remove the contributions from 2,357 point-like X-ray sources due to neutron stars, black holes, white dwarfs, foreground stars, and background galaxies.



What remained was an irregular, diffuse glow from a 10-million-degree Celsius gas cloud, embedded in a glow of higher-energy X-rays with a spectrum characteristic of 100-million-degree gas.

"The best explanation for the Chandra data is that the high-energy X-rays come from an extremely hot gas cloud," says Muno, lead author on a paper describing the results to appear in the September 20, 2004 issue of The Astrophysical Journal. "This would mean that there is a significant shortcoming in our understanding of heat sources in the center of our Galaxy."

The combined gravity from the known objects in the center of the Milky Way — all the stars and the supermassive black hole in the center — is not strong enough to prevent the escape of the 100 million degree gas from the region. The escape time would be about 10,000 years, a small fraction of the 10-billion-year lifetime of the Galaxy. This implies that the gas would have to be continually regenerated and heated.

The gas could be replenished by winds from massive stars, but the source of the heating remains a puzzle. The high-energy diffuse X-rays from the center of the Galaxy appear to be the brightest part of a ridge of X-ray emission observed by Chandra and previous X-ray observatories to extend for several thousand light years along the disk of the Galaxy. The extent of this hot ridge implies that it is probably not being heated by the supermassive black hole at the center of the Milky Way.

Scientists have speculated that magnetic turbulence produced by supernova shock waves can heat the gas to 100 million degrees. Alternatively, high-energy protons and electrons produced by supernova shock waves could be the heat source. However, both these possibilities have problems. The spectrum is not consistent with heating by high-energy particles, the observed magnetic field in the Galactic center does not have the proper structure, and the rate of supernova explosions does not appear to be frequent enough to provide the necessary heating.

The team also considered whether the high-energy X-rays only appear to be diffuse, and are in fact due to the combined glow of an as yet undetected population of point-like sources, like the diffuse lights of a city seen at a great distance. The difficulty with this explanation is that 200,000 sources would be required in the observed region. Although the total number of stars in this region is about 30 million, the number of stars of the type expected to produce X-rays at the required power and energy is estimated to be only 20 thousand. Further, such a large unresolved population of sources would produce a much smoother X-ray glow than is observed.

"There is no known class of objects that could account for such a large number of high-energy X-ray sources at the Galactic center," said Fred Baganoff of the Massachusetts Institute of Technology (MIT) in Cambridge, a coauthor of the study.

These results were based on over 170 hours of observations of a 17-by-17-arcminute region around the Milky Way’s center using Chandra’s Advanced CCD Imaging Spectrometer instrument. Other team members from UCLA, MIT, and Penn State are also co-authors on the upcoming paper in The Astrophysical Journal.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA’s Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

| EurekAlert!
Further information:
http://chandra.nasa.gov
http://chandra.harvard.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>