Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Camera Set To Produce The First Direct Images Of Exoplanets

23.06.2004


Simultaneous Views of Titan’s Surface and Atmosphere


Six Nightly Views of Titan’s Surface


A University of Arizona astronomer and his collaborators are using a novel camera to hunt for extrasolar planets.

The project is being funded over the next five years by a $545,000 National Science Foundation award. NSF awarded the highly competitive Faculty Early Career Development (CAREER) grant to Associate Professor Laird M. Close. The CAREER program is a foundation-wide activity that offers the NSF’s most prestigious awards for new faculty members. The CAREER program recognizes and supports the early career-development activities of those teacher-scholars who are most likely to become the academic leaders of the 21st century.

Close and his graduate students, Beth Biller and Eric Nielsen, will use Close’s custom SDI (Simultaneous Differential Imager) cameras on two big telescopes in Arizona and Chile to hunt for planets orbiting other stars.



Astronomers have indirectly detected more than 100 planets circling stars in other solar systems, but none have yet been directly imaged. Close plans to solve the problem of detecting faint planets near their billion-times-brighter stars by using a unique, high-contrast, SDI camera. The camera uses adaptive optics, which remove the blurring effects of the Earth’s atmosphere and produce extremely sharp images.

The SDI camera splits light from a single object into four identical images, then passes the resulting beams through four slightly different methane-sensitive filters. When the filtered light beams hit the detector array, astronomers can subtract the images so the bright star disappears, revealing the massive, methane-rich planet.

Professor Close and his collaborators will use SDI to examine 100 young northern- and southern-hemisphere stars that are near Earth. They will hunt for planets as small as 3 Jupiter masses (three times the mass of Jupiter) that are as close as 5 AU from their stars. This is about the distance between Jupiter and the sun. One "AU," or astronomical unit, is the distance between Earth and the sun.

The northern SDI camera will be used on the 6.5-meter, UA/Smithsonian, MMT telescope on Mount Hopkins, Ariz, in collaboration with Steward Observatory astronomer Donald McCarthy. The southern SDI camera has been installed at the European Southern Observatory’s (ESO) 8.2-meter Very Large Telescope (VLT) in Chile. Astronomers Rainer Lenzen and Wolfgang Brandner of the Max-Planck-Institut für Astronomie (MPIA), Heidelberg, Germany, and Markus Hartung of ESO collaborate on this project.

"Our imaging technique should be about 100 times more sensitive than current imaging technologies," Close said. "This will allow us to directly detect sub-stellar companions to nearby stars. It also will allow us to look for planets in regions where we have not been able to search before but that are likely to be rich with massive planets," he added. "If we find such planets, they can help tell us if those stars have Earth-like planets."

In collaboration with Mark McCaughrean of the Astrophysical Institute Potsdam, Close and his German colleagues discovered a 27 Jupiter mass object named Epsilon Indi Bb the first night they used the camera. They reported the finding the Journal Astronomy & Astrophysics.

Epsilon Indi Bb is a methane-rich object a mere 12 light years from the sun and just 2.6 AU away from a 43 Jupiter-mass object. Epsilon Indi Ba, that McCaughrean and others reported in another paper in 2003.

"Although a bit too massive to be a true planet, Epsilon Indi Bb is just slightly hotter than a convection oven," Close said. "It is the coolest, closest binary ’brown dwarf’ ever imaged."

Brown dwarfs are too small to shine like a star but too big to be called planets.

"This discovery will play an important role in understanding the nature and physics of brown dwarfs," Close said.

Last February, during commissioning of the SDI camera in Chile, Hartung, Close and their European colleagues produced the sharpest images ever taken of Saturn¹s largest moon, Titan.

One of the super-sharp images shows red surface features and dark surface areas on the moon, which is ringed with a haze of Titan’s methane-rich atmosphere, shown as blue.

The image has a 360 kilometer resolution at the distance of Saturn, then at about 8.5 AU from Earth. That is, the SDI camera resolves a 200-mile distance on Titan from about 800 million miles away.

"The ’red’ features may be the icy surface of Titan," Close said. "The dark areas may be liquid methane and ethane lakes."

Hartung has also made a movie of Titan rotating, based on SDI data. It is online at http://www.eso.org/outreach/press-rel/pr-2004/video/vid-06-04.avi

The Journal Astronomy & Astrophysics will publish a 2004 paper by Hartung, Tom Herbst of MPIA, and the rest of the SDI team on these Titan images.

| University of Arizona
Further information:
http://www.arizona.edu
http://eso.org

More articles from Physics and Astronomy:

nachricht Highest-energy cosmic rays have extragalactic origin
25.09.2017 | CNRS

nachricht NASA'S OSIRIS-REx spacecraft slingshots past Earth
25.09.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

MRI contrast agent locates and distinguishes aggressive from slow-growing breast cancer

25.09.2017 | Health and Medicine

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>