Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA and EADS-CASA sign contract to build instrument for the SMOS mission

18.06.2004


The Soil Moisture and Ocean Salinity mission will provide global maps of soil moisture and ocean salinity. Soil moisture data are urgently required for hydrological studies and data on ocean salinity are vital for improving our undertanding of ocean circulation patterns. Together these data will contribute to furthering our knowledge of the Earth’s water cycle, and will improve climate, weather and extreme-event forecasting.


A significant milestone in the development of ESA’s Soil Moisture and Ocean Salinity (SMOS) mission was reached last week when the contract to build the payload was signed between ESA and EADS (European Aeronautic Defence and Space Company)-CASA from Spain.

The contract, worth 62 million euros, was signed in Madrid, Spain on 11 June 2004 at the premises of the CDTI (Centre for Development of Industrial Technology). EADS-CASA now heads an industrial consortium of more than 20 companies from all over Europe, and is committed to construct the innovative MIRAS (Microwave Imaging Radiometer using Aperture Synthesis) instrument that will form the core of the SMOS mission.

Scheduled for launch in early 2007, SMOS is the second Earth Explorer Opportunity mission to be implemented as part of ESA’s Living Planet Programme. The main aim of the mission is to further the development of climatological, meteorological and hydrological models by observing soil moisture over the Earth’s landmasses and sea-surface salinity over the oceans for a period of at least 3 years. At the signing ceremony, Prof. José Achache, ESA’s Director of Earth Observation Programmes, stated that, “SMOS will provide a major advancement in our ability to model and understand the global hydrological cycle.”



The moisture in soil and the salt in the oceans are intrinsically linked to the Earth’s water cycle and climate. Currently, in-situ measurements for soil moisture are sparse, but if we are to better understand the water cycle so that the forecasting of climate, weather and extreme events such as floods can be improved more data are urgently required. The same is true for data on ocean salinity - only a small fraction of the ocean is sampled on any regular basis. However, salinity is an important factor driving the currents in the ocean and in turn ocean circulation plays a crucial role moderating the climate. Therefore, comprehensive data on ocean salinity would greatly improve our knowledge of the conditions that influence global ocean circulation and thus climate.

Not only will this mission further our understanding of the Earth system, but it will also demonstrate a new measuring technique by adopting a completely different approach in the field of remote sensing. SMOS will carry the first-ever polar-orbiting satellite-borne
2-D interferometric radiometer. From an altitude of 763 km, the novel MIRAS instrument has been designed to capture images of microwave radiation emitted from the surface of the Earth at L-band (1.4 GHz).

MIRAS is made up of a central structure and three deployable arms. There are 69 antenna elements, so-called LICEF receivers, which are equally distributed over the central structure and three arms. Each LICEF is an antenna-receiver integrated unit that measures the radiation emitted from the Earth at L-band. The measuring principle takes advantage of the fact that moisture and salinity influence the emissivity of soil and seawater, respectively. From the information gathered, scientists will be able to derive maps of soil moisture and ocean salinity on a global scale.

Now that the contract has been signed to go ahead and build the payload the SMOS mission has taken a significant and exciting step forward in its development.

Ms Karina De Castris | ESA-ESRIN
Further information:
http://www.esa.int/esaSA/SEMLY93VQUD_earth_0.html

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>