Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct measurement of the mass of ultra-cool brown dwarf binary

16.06.2004


An international team of astronomers using the world’s biggest telescopes have directly measured the mass of an ultra-cool brown dwarf star and its companion dwarf star for the first time. Barely the size of the planet Jupiter, the dwarf star weighs in at just 8.5 percent of the mass of our Sun. This is the first ever mass measurement of a dwarf star belonging to a new stellar class of very low mass ultra-cool dwarf stars. The observation is a major step towards our understanding of the types of objects that occupy the gap between the lightest stars and the heaviest planets.


This image shows the orbit of the brown dwarf around the ultra-cool L-dwarf. Each red dot on the orbit (in blue) corresponds to one observation made with a ground- or space-based telescope. The observations cover 60% of the whole orbit. Credit: ESA/NASA and Herve Bouy (Max-Planck-Institut für Extraterrestrische Physik/ESO, Germany)
Image credit: ESA/NASA and Herve Bouy (Max-Planck-Institut für Extraterrestrische Physik/ESO, Germany)



In 2000 the NASA/ESA Hubble Space Telescope detected a brown dwarf companion around the star named 2MASSW J0746425+2000321. In the subsequent four years the system was tracked by the NASA/ESA Hubble Space Telescope, the European Southern Observatory’s Very Large Telescope (Chile), the Gemini North (Hawaii) and the Keck Telescopes (Hawaii). The masses of the stars could be measured from the orbital motions of the two objects. With a mass of 8.5% of our Sun’s mass, the primary star is precariously close to the theoretical minimal fusion limit, which is 7.5 percent of our Sun’s mass. Objects below this limit are called brown dwarfs, failed stars or even super-planets, as their properties are more similar to those of large Jupiter-type planets than stars. The brown dwarf is measured to be 6.6 percent of the Sun’s mass, and thereby too puny to shine by nuclear fusion.

The mass measurements were made by an international team of astronomers led by Hervé Bouy from the Max-Planck-Institut für Extraterrestrische Physik/ESO, Germany and the Observatoire de Grenoble, France; Eduardo Martin (Instituto de Astrofisica de Canarias, Spain); and Wolfgang Brandner (Max Planck Institut für Astronomie, Germany).


To be able to compute the masses of the two stars, detailed observations of each component of the binary system were required and interpreted using the latest stellar evolutionary models. Because both objects are very close to each other, telescopes capable of providing high-resolution images were needed. The separation on the sky between the two stars is only about 1/20000 of a degree – similar to the size of a 1 Euro coin seen at a distance of about 25 km.

Furthermore, observations had to be performed over a long period of time (four years) to follow the motion of both objects around each other. Very accurate measurements of the relative position of the individual components were made, so that the full 10-year orbit of the binary system could be reconstructed. Once the orbit was known, the astronomers were able to use Kepler’s laws, first formulated four centuries ago, and some simple high school math to compute the total mass of the system. The distance between the two objects is around 2.5 times the distance from the Sun to the Earth.

Once the total mass of the system was known, very precise measurements of the brightness and temperature of each object taken by Hubble made it possible to split the total mass into the masses of the primary star and the brown dwarf companion.

Both components of the binary system belong to the L spectral class that includes the lowest mass stars and the highest mass brown dwarfs in our solar neighbourhood. This spectral class was discovered in 1997 and was added to the spectral classification that had remained unchanged for half a century. The L class is characterized by the formation of dust grains in the object’s atmosphere, which dramatically changes the visible-light spectrum.

Theoretically predicted for a long time, these sub-stellar objects called "brown dwarfs" were only discovered in 1995. Indirect techniques were conceived to identify brown dwarf candidates from their brightness and colour. However, the mass measurement is the only direct way to classify an object as a brown dwarf. Binary brown dwarfs are especially challenging because they are faint and lie very close to each other. Hubble or large ground-based telescopes using adaptive optics to cancel out atmospheric blur are therefore required to perform such studies.

The study opens a new chapter in the investigation of the dust-filled molecule-rich atmospheres of objects in the transitional zone between the lightest stars and the heaviest exoplanets.

Lars Christensen | ESA
Further information:
http://www.spacetelescope.org/news/html/heic0410.html

More articles from Physics and Astronomy:

nachricht NUS engineers develop novel method for resolving spin texture of topological surface states using transport measurements
26.04.2018 | National University of Singapore

nachricht European particle-accelerator community publishes the first industry compendium
26.04.2018 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>