Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First direct measurement of the mass of ultra-cool brown dwarf binary

16.06.2004


An international team of astronomers using the world’s biggest telescopes have directly measured the mass of an ultra-cool brown dwarf star and its companion dwarf star for the first time. Barely the size of the planet Jupiter, the dwarf star weighs in at just 8.5 percent of the mass of our Sun. This is the first ever mass measurement of a dwarf star belonging to a new stellar class of very low mass ultra-cool dwarf stars. The observation is a major step towards our understanding of the types of objects that occupy the gap between the lightest stars and the heaviest planets.


This image shows the orbit of the brown dwarf around the ultra-cool L-dwarf. Each red dot on the orbit (in blue) corresponds to one observation made with a ground- or space-based telescope. The observations cover 60% of the whole orbit. Credit: ESA/NASA and Herve Bouy (Max-Planck-Institut für Extraterrestrische Physik/ESO, Germany)
Image credit: ESA/NASA and Herve Bouy (Max-Planck-Institut für Extraterrestrische Physik/ESO, Germany)



In 2000 the NASA/ESA Hubble Space Telescope detected a brown dwarf companion around the star named 2MASSW J0746425+2000321. In the subsequent four years the system was tracked by the NASA/ESA Hubble Space Telescope, the European Southern Observatory’s Very Large Telescope (Chile), the Gemini North (Hawaii) and the Keck Telescopes (Hawaii). The masses of the stars could be measured from the orbital motions of the two objects. With a mass of 8.5% of our Sun’s mass, the primary star is precariously close to the theoretical minimal fusion limit, which is 7.5 percent of our Sun’s mass. Objects below this limit are called brown dwarfs, failed stars or even super-planets, as their properties are more similar to those of large Jupiter-type planets than stars. The brown dwarf is measured to be 6.6 percent of the Sun’s mass, and thereby too puny to shine by nuclear fusion.

The mass measurements were made by an international team of astronomers led by Hervé Bouy from the Max-Planck-Institut für Extraterrestrische Physik/ESO, Germany and the Observatoire de Grenoble, France; Eduardo Martin (Instituto de Astrofisica de Canarias, Spain); and Wolfgang Brandner (Max Planck Institut für Astronomie, Germany).


To be able to compute the masses of the two stars, detailed observations of each component of the binary system were required and interpreted using the latest stellar evolutionary models. Because both objects are very close to each other, telescopes capable of providing high-resolution images were needed. The separation on the sky between the two stars is only about 1/20000 of a degree – similar to the size of a 1 Euro coin seen at a distance of about 25 km.

Furthermore, observations had to be performed over a long period of time (four years) to follow the motion of both objects around each other. Very accurate measurements of the relative position of the individual components were made, so that the full 10-year orbit of the binary system could be reconstructed. Once the orbit was known, the astronomers were able to use Kepler’s laws, first formulated four centuries ago, and some simple high school math to compute the total mass of the system. The distance between the two objects is around 2.5 times the distance from the Sun to the Earth.

Once the total mass of the system was known, very precise measurements of the brightness and temperature of each object taken by Hubble made it possible to split the total mass into the masses of the primary star and the brown dwarf companion.

Both components of the binary system belong to the L spectral class that includes the lowest mass stars and the highest mass brown dwarfs in our solar neighbourhood. This spectral class was discovered in 1997 and was added to the spectral classification that had remained unchanged for half a century. The L class is characterized by the formation of dust grains in the object’s atmosphere, which dramatically changes the visible-light spectrum.

Theoretically predicted for a long time, these sub-stellar objects called "brown dwarfs" were only discovered in 1995. Indirect techniques were conceived to identify brown dwarf candidates from their brightness and colour. However, the mass measurement is the only direct way to classify an object as a brown dwarf. Binary brown dwarfs are especially challenging because they are faint and lie very close to each other. Hubble or large ground-based telescopes using adaptive optics to cancel out atmospheric blur are therefore required to perform such studies.

The study opens a new chapter in the investigation of the dust-filled molecule-rich atmospheres of objects in the transitional zone between the lightest stars and the heaviest exoplanets.

Lars Christensen | ESA
Further information:
http://www.spacetelescope.org/news/html/heic0410.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>