Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cassini-Huygens Looks At Phoebe’s Distant Past


Images collected during the Cassini-Huygens close fly-by of Saturn’s moon Phoebe give strong evidence that the tiny moon may be rich of ice and covered by a thin layer of darker material.

Shown here is a mosaic of seven of the sharpest, highest resolution images taken of Phoebe during the Cassini-Huygens close fly-by of the tiny moon. The image scales range from 27 to 13 metres per pixel. Smaller and smaller craters can be detected as resolution increases from left to right. The number of blocks, or bumps on the surface also increases to the right. The Sun is coming from the right, so the bright-dark pattern is reversed between blocks and small craters. Grooves or chains of pits are seen on the left portion of the mosaic, which may mark fractures or faults induced by large impact events. Many of the small craters have bright rays, similar to recent craters on the Moon. There are also bright streaks on steep slopes, perhaps where loose material slid downhill during the seismic shaking of impact events. There are also places where especially dark materials are present, perhaps rich in carbon compounds.

Its surface is heavily battered, with large and small craters. It might be an ancient remnant of the formation of the Solar System.
On Friday 11 June, at 21:56 CET, the Cassini-Huygens spacecraft flew by Saturn’s outermost moon Phoebe, coming within approximately 2070 kilometres of the satellite’s surface. All eleven on-board instruments scheduled to be active at that time worked flawlessly and acquired data.

The first high-resolution images show a scarred surface, covered with craters of all sizes and large variation of brightness across the surface.

Phoebe is a peculiar moon amongst the 31 known satellites orbiting Saturn. Most of Saturn’s moons are bright but Phoebe is very dark and reflects only 6% of the Sun’s light. Another difference is that Phoebe revolves around the planet on a rather elongated orbit and in a direction opposite to that of the other large moons (a motion known as ’retrograde’ orbit).

All these hints suggested that Phoebe, rather than forming together with Saturn, was captured at a later stage. Scientists, however, do not know whether Phoebe was originally an asteroid or an object coming from the ’Kuiper Belt’.

The stunning images obtained by Cassini’s high-resolution camera now seem to indicate that it contains ice-rich material and is covered by a thin layer of dark material, probably 300-500 metres thick.

Scientists base this hypothesis on the observation of bright streaks in the rims of the largest craters, bright rays radiating from smaller craters, grooves running continuously across the surface of the moon and, most importantly, the presence of layers of dark material at the top of crater walls.

"The imaging team is in hot debate at the moment on the interpretations of our findings," said Dr Carolyn Porco, Cassini imaging team leader at the Space Science Institute in Boulder, USA.

"Based on our images, some of us are leaning towards the view that has been promoted recently, that Phoebe is probably ice-rich and may be an object originating in the outer solar system, more related to comets and Kuiper Belt objects than to asteroids."

The high-resolution images of Phoebe show a world of dramatic landforms, with landslides and linear structures such as grooves, ridges and chains of pits. Craters are ubiquitous, with many smaller than one kilometre.

"This means, besides the big ones, lots of projectiles smaller than 100 metres must have hit Phoebe," said Prof. Gerhard Neukum, Freie Universitaet Berlin, Germany, and a member of the imaging team. Whether these projectiles came from outside or within the Saturn system is debatable.

There is a suspicion that Phoebe, the largest of Saturn’s outer moons, might be parent to the other, much smaller retrograde outer moons that orbit Saturn. They could have resulted from the impact ejecta that formed the many craters on Phoebe.

Besides these stunning images, the instruments on board Cassini collected a wealth of other data, which will allow scientists to study the surface structures, determine the mass and composition of Phoebe and create a global map of it.

"If these additional data confirm that Phoebe is mostly ice, covered by layers of dust, this could mean that we are looking at a ’leftover’ from the formation of the Solar System about 4600 million years ago," said Dr Jean-Pierre Lebreton, ESA Huygens Project Scientist.

Phoebe might indeed be an icy wanderer from the distant outer reaches of the Solar System, which, like a comet, was dislodged from the Kuiper Belt and captured by Saturn when the planet was forming.

Whilst studying the nature of Phoebe may give scientists clues on the origin of the building blocks of the Solar System, more data are needed to reconstruct the history of our own neighbourhood in space.

With that aim, ESA’s Rosetta mission is on its way to study one of these primitive objects, Comet 67P/Churyumov-Gerasimenko, from close quarters for over a year and land a probe on it.

The fly-by of Phoebe on 11 June was the only one that Cassini-Huygens will perform with this mysterious moon. The mission will now take the spacecraft to its closest approach to Saturn on 1 July, when it will enter into orbit around the planet.

From there, it will conduct 76 orbits of Saturn over four years and execute 52 close encounters with seven other Saturnian moons. Of these, 45 will be with the largest and most interesting one, Titan. On 25 December, Cassini will release the Huygens probe, which will descend through Titan’s thick atmosphere to investigate its composition and complex organic chemistry.

Roberto Lo Verde | European Space Agency
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>