Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cassini-Huygens Looks At Phoebe’s Distant Past

15.06.2004


Images collected during the Cassini-Huygens close fly-by of Saturn’s moon Phoebe give strong evidence that the tiny moon may be rich of ice and covered by a thin layer of darker material.


Shown here is a mosaic of seven of the sharpest, highest resolution images taken of Phoebe during the Cassini-Huygens close fly-by of the tiny moon. The image scales range from 27 to 13 metres per pixel. Smaller and smaller craters can be detected as resolution increases from left to right. The number of blocks, or bumps on the surface also increases to the right. The Sun is coming from the right, so the bright-dark pattern is reversed between blocks and small craters. Grooves or chains of pits are seen on the left portion of the mosaic, which may mark fractures or faults induced by large impact events. Many of the small craters have bright rays, similar to recent craters on the Moon. There are also bright streaks on steep slopes, perhaps where loose material slid downhill during the seismic shaking of impact events. There are also places where especially dark materials are present, perhaps rich in carbon compounds.
Credits: NASA/ESA/ASI



Its surface is heavily battered, with large and small craters. It might be an ancient remnant of the formation of the Solar System.
On Friday 11 June, at 21:56 CET, the Cassini-Huygens spacecraft flew by Saturn’s outermost moon Phoebe, coming within approximately 2070 kilometres of the satellite’s surface. All eleven on-board instruments scheduled to be active at that time worked flawlessly and acquired data.

The first high-resolution images show a scarred surface, covered with craters of all sizes and large variation of brightness across the surface.



Phoebe is a peculiar moon amongst the 31 known satellites orbiting Saturn. Most of Saturn’s moons are bright but Phoebe is very dark and reflects only 6% of the Sun’s light. Another difference is that Phoebe revolves around the planet on a rather elongated orbit and in a direction opposite to that of the other large moons (a motion known as ’retrograde’ orbit).

All these hints suggested that Phoebe, rather than forming together with Saturn, was captured at a later stage. Scientists, however, do not know whether Phoebe was originally an asteroid or an object coming from the ’Kuiper Belt’.

The stunning images obtained by Cassini’s high-resolution camera now seem to indicate that it contains ice-rich material and is covered by a thin layer of dark material, probably 300-500 metres thick.

Scientists base this hypothesis on the observation of bright streaks in the rims of the largest craters, bright rays radiating from smaller craters, grooves running continuously across the surface of the moon and, most importantly, the presence of layers of dark material at the top of crater walls.

"The imaging team is in hot debate at the moment on the interpretations of our findings," said Dr Carolyn Porco, Cassini imaging team leader at the Space Science Institute in Boulder, USA.

"Based on our images, some of us are leaning towards the view that has been promoted recently, that Phoebe is probably ice-rich and may be an object originating in the outer solar system, more related to comets and Kuiper Belt objects than to asteroids."

The high-resolution images of Phoebe show a world of dramatic landforms, with landslides and linear structures such as grooves, ridges and chains of pits. Craters are ubiquitous, with many smaller than one kilometre.

"This means, besides the big ones, lots of projectiles smaller than 100 metres must have hit Phoebe," said Prof. Gerhard Neukum, Freie Universitaet Berlin, Germany, and a member of the imaging team. Whether these projectiles came from outside or within the Saturn system is debatable.

There is a suspicion that Phoebe, the largest of Saturn’s outer moons, might be parent to the other, much smaller retrograde outer moons that orbit Saturn. They could have resulted from the impact ejecta that formed the many craters on Phoebe.

Besides these stunning images, the instruments on board Cassini collected a wealth of other data, which will allow scientists to study the surface structures, determine the mass and composition of Phoebe and create a global map of it.

"If these additional data confirm that Phoebe is mostly ice, covered by layers of dust, this could mean that we are looking at a ’leftover’ from the formation of the Solar System about 4600 million years ago," said Dr Jean-Pierre Lebreton, ESA Huygens Project Scientist.

Phoebe might indeed be an icy wanderer from the distant outer reaches of the Solar System, which, like a comet, was dislodged from the Kuiper Belt and captured by Saturn when the planet was forming.

Whilst studying the nature of Phoebe may give scientists clues on the origin of the building blocks of the Solar System, more data are needed to reconstruct the history of our own neighbourhood in space.

With that aim, ESA’s Rosetta mission is on its way to study one of these primitive objects, Comet 67P/Churyumov-Gerasimenko, from close quarters for over a year and land a probe on it.

The fly-by of Phoebe on 11 June was the only one that Cassini-Huygens will perform with this mysterious moon. The mission will now take the spacecraft to its closest approach to Saturn on 1 July, when it will enter into orbit around the planet.

From there, it will conduct 76 orbits of Saturn over four years and execute 52 close encounters with seven other Saturnian moons. Of these, 45 will be with the largest and most interesting one, Titan. On 25 December, Cassini will release the Huygens probe, which will descend through Titan’s thick atmosphere to investigate its composition and complex organic chemistry.

Roberto Lo Verde | European Space Agency
Further information:
http://www.esa.int/SPECIALS/Cassini-Huygens/SEMNL63VQUD_0.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>