Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key theory of galaxy formation no longer conflicts with observations

09.06.2004


Astrophysicists led by the University of Chicago’s Andrey Kravtsov have resolved an embarrassing contradiction between a favored theory of how galaxies form and what astronomers see in their telescopes.



Astrophysicists base their understanding of how galaxies form on an extension of the big bang theory called the cold dark matter theory. In this latter theory, small galaxies collide and merge, inducing bursts of star formation that create the different types of massive and bright galaxies that astronomers see in the sky today. (Dark matter takes its name from the idea that 85 percent of the total mass of the universe is made of unknown matter that is invisible to telescopes, but whose gravitational effects can be measured on luminous galaxies.)

This theory fits some key data that astrophysicists have collected in recent years. Unfortunately, when astrophysicists ran supercomputer simulations several years ago, they ended up with 10 times more dark matter satellites--clumps of dark matter orbiting a large galaxy--than they expected.


"The problem has been that the simulations don’t match the observations of galaxy properties," said David Spergel, professor of astrophysics at Princeton University. "What Andrey’s work represents is a very plausible solution to this problem."

Kravtsov and his collaborators found the potential solution in new supercomputer simulations they will describe in a paper that will appear in the July 10 issue of the Astrophysical Journal. "The solution to the problem is likely to be in the way the dwarf galaxies evolve," Kravtsov said, referring to the small galaxies that inhabit the fringes of large galaxies.

In general, astrophysicists believe that formation of very small dwarf galaxies should be suppressed. This is because gas required for continued formation of stars can be heated and expelled by the first generation of exploding supernovae stars. In addition, ultraviolet radiation from galaxies and quasars that began to fill the universe approximately 12 billion years ago heats the intergalactic gas, shutting down the supply of fresh gas to dwarf galaxies.

In the simulations, Kravtsov, along with Oleg Gnedin of the Space Telescope Science Institute and Anatoly Klypin of New Mexico State University, found that some of the dwarf galaxies that are small today have been more massive in the past and could gravitationally collect the gas they need to form stars and become a galaxy.

"The systems that appear rather feeble and anemic today could, in their glory days, form stars for a relatively brief period," Kravtsov said. "After a period of rapid mass growth, they lost the bulk of their mass when they experienced strong tidal forces from their host galaxy and other galaxies surrounding them."

This galactic "cannibalism" persists even today, with many of the "cannibalized" dwarf galaxies becoming satellites orbiting in the gravitational pull of larger galaxies.

"Just like the planets in the solar system surrounding the sun, our Milky Way galaxy and its nearest neighbor, the Andromeda galaxy, are surrounded by about a dozen faint ’dwarf’ galaxies," Kravtsov said. "These objects were pulled in by the gravitational attraction of the Milky Way and Andromeda some time ago during their evolution."

The simulations had succeeded where others had failed because Kravtsov’s team analyzed simulations that were closely spaced in time at high resolution. This allowed the team to track the evolution of individual objects in the simulations. "This is rather difficult and is not often done in analyses of cosmological simulations. But in this case it was the key to recognize what was going on and get the result," Kravtsov said.

The result puts the cold dark matter scenario on more solid ground. Scientists had attempted to modify the main tenets of the scenario and the properties of dark matter particles to eliminate the glaring discrepancy between theory and observation of dwarf galaxies. "It turns out that the proposed modifications introduced more problems than they solved," Kravtsov said.


The simulations were performed at the National Center for Supercomputer Applications, University of Illinois at Urbana-Champaign, with grants provided by the National Science Foundation and the National Aeronautics and Space Administration.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>