Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-cold neutron source at Los Alamos confirmed as world’s most intense

09.06.2004


Some slow, cold visitors stopped by Los Alamos National Laboratory last week, and their arrival could prove a godsend to physicists seeking a better theory of everything.



Researchers working at the University of California’s Los Alamos Neutron Science Center and eight other member institutions of an international collaboration took a giant step toward their goal of constructing the most intense source of ultra-cold neutrons in the world, measuring ultra-cold neutron production in their new source for the first time.

"Ultimately, we want to be able to bottle ultra-cold neutrons and watch them decay, giving us new insights into particle physics," said Tom Bowles of Los Alamos’ Physics Division, who leads the team.


Neutrons are at once enigmatic and fundamental to all matter. Ultra-cold neutrons are even more elusive, with wavelengths greater than 500 angstroms and temperatures of 0.001 degrees Kelvin above absolute zero (460 degrees below zero Fahrenheit). They move at velocities slower than 25 feet a second and can only rise about 10 feet in height against the pull of gravity.

Physicists need ultra-cold neutrons because they can be confined in physical or magnetic bottles where they decay with a characteristic lifetime of about 15 minutes. After trapping them, researchers can measure such basic neutron properties as lifetime and decay correlations and search for possible new properties such as an electric dipole moment. Such data can lead to accurate measurements of fundamental constants of nature, advances in the quest for new particles predicted by unified field theories, and new insights into how matter began in the Big Bang.

Preliminary measurements over the past week demonstrated that the source will provide the highest density of UCNs in the world, enabling the team to begin a major research program at Los Alamos.

"Our initial results are very encouraging and we expect by this fall to complete commissioning of what will be the most intense source of UCN in the world. Coupled with the unique properties of UCN, this will provide a new window at Los Alamos through which we can work to understand some of the most puzzling issues facing modern physics," Bowles said. "We also will be pursing the exciting prospect of studying the potential application of UCN to a wider range of research that may benefit studies of microscopic surface properties of materials and structures of large macro-molecules."

The key to Los Alamos’ success dates back to 1994 and a collaboration to develop a solid deuterium source for ultra-cold neutrons with the Petersburg (Russia) Nuclear Physics Group, another member of the team. Four years later, design work was completed and the team built a prototype super-thermal source at the Weapons Neutron Resource, part of the Los Alamos Neutron Science Center.

The 800-million-electron-volt LANSCE proton beam strikes a tungsten target; each proton that hits produces about 14 neutrons at energies of a few million electron volts, which are reduced to typical cold neutron temperatures of 40 Kelvin by scattering in polyethylene moderators.

As they interact with the solid deuterium inside a guide tube coated with nickel-58, the cold neutrons give up their energy and become ultra cold. In effect, the weak crystal structure of the solid deuterium trap creates a one-way pipe that scatters the cold neutrons’ energy away and won’t let them regain energy above this so-called ground state. The UCNs then travel through a guide tube and are detected by a helium-three detector.

Previous sources, built at nuclear reactors, couldn’t produce enough ultra-cold neutrons for key experiments, such as those under way at Los Alamos to measure neutron beta decay with sufficient precision to tell whether massive subatomic particles exist that influence the so-called electroweak force, one of the fundamental forces of nature. Because the UCNs are produced at a neutron spallation source instead of a reactor, researchers can acquire data without a continual beam of protons striking the source, so sensitive experiments can be performed with much smaller backgrounds that might throw off measurements.

LANSCE is uniquely suited to the production of UCNs and fundamental research with neutrons, Bowles said.

"The proton accelerator, a well-equipped experimental hall built up during 30 years of nuclear physics studies, and a pool of highly skilled and experienced personnel - all these factors make it possible to bring a major new research tool online cost-effectively in a short period of time," he said. "Ultimately, we expect this new capability to develop into a national UCN user facility serving a wide range of researchers from around the world."

Los Alamos National Laboratory is operated by the University of California for the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy and works in partnership with NNSA’s Sandia and Lawrence Livermore national laboratories to support NNSA in its mission.

Los Alamos develops and applies science and technology to ensure the safety and reliability of the U.S. nuclear deterrent; reduce the threat of weapons of mass destruction, proliferation and terrorism; and solve national problems in defense, energy, environment and infrastructure.

Jim Danneskiold | LANL
Further information:
http://www.lanl.gov/worldview/news/releases/archive/04-041.shtml

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>