Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A quantum mechanical ’tune up’ for better measurement

07.06.2004


By exploiting the weird quantum behavior of atoms, physicists at the Commerce Department’s National Institute of Standards and Technology (NIST) have demonstrated a new technique that someday could be used to save weeks of measurements needed to operate ultraprecise atomic clocks. The technique also could be used to improve the precision of other measurement processes such as spectroscopy.

The technique, described in today’s issue of Science, effectively turns atoms into better frequency sensors. Eventually, the technique could help scientists measure the ticks of an atomic clock faster and more accurately. Just as a grandfather clock uses the regular swings of a pendulum to count off each second of time, an atomic clock produces billions of ticks per second by detecting the regular oscillations of atoms. The trick to producing extremely accurate atomic clocks is to measure this frequency very precisely for a specific atom.

In the latest experiment, the scientists used very brief pulses of ultraviolet light in a NIST-developed technique to put three beryllium ions (charged atoms) into a special quantum state called entanglement. In simple terms, entanglement involves correlating the fates of two or more atoms such that their behavior--in concert--is very different from the independent actions of unentangled atoms. One effect is that, once a measurement is made on one atom, it becomes possible to predict the result of a measurement on another. When applied to atoms in an atomic clock, the effect is that n entangled atoms will tick n times faster than the unentangled atoms.



Currently, scientists at NIST and other laboratories make many thousands of measurements of the ticks of unentangled atoms and average these results to get highly accurate atomic clocks (currently keeping time to better than one second in 40 million years).

If entangled atoms could be used in a clock, the same or better results could be achieved with far fewer separate measurements. The current experiment demonstrates this new approach to precision measurement with three ions; however, the researchers are looking forward to entangling even more ions to take greater advantage of the technique.

"Even if we could implement this new technique with only 10 ions, in the clock business that’s really important because the clocks must be averaged for weeks and even months," says NIST physicist Dave Wineland, leader of the research group. "The time needed to do that would be reduced by a factor of 10."

In the experiment reported in Science, scientists entangled the ions with two laser beams, using a technique originally developed for quantum computing applications. The ions are hit with another series of laser pulses and their fluorescence (emitted light, which represents the ions’ quantum state) is measured for a specific period of time. The duration of the steps, number of ions, and other experimental conditions are controlled carefully to ensure all the ions are in the same state when they are measured, so that either all or none fluoresce, which simplifies the readout.


###
The research was supported in part by the Advanced Research and Development Activity and the National Security Agency.

As a non-regulatory agency of the U.S. Department of Commerce’s Technology Administration, NIST develops and promotes measurement, standards and technology to enhance productivity, facilitate trade and improve the quality of life.


Laura Ost | NIST
Further information:
http://www.nist.gov/public_affairs/releases/quantumtuneup.html

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>