Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smoking gun found for gamma-ray burst in Milky Way


Combined data from NASA’s Chandra X-ray Observatory and infrared observations with the Palomar 200-inch telescope have uncovered evidence that a gamma-ray burst, one of nature’s most catastrophic explosions, occurred in our Galaxy a few thousand years ago. The supernova remnant, W49B, may also be the first remnant of a gamma-ray burst discovered in the Milky Way.

Photo: Composite image of the supernova remnant W49B (X-ray: NASA/CXC/SSC/J. Keohane et al.; Infrared: Caltech/Palomar/J.Keohane et al.)

W49B is a barrel-shaped nebula located about 35,000 light years from Earth. The new data reveal bright infrared rings, like hoops around a barrel, and intense X-radiation from iron and nickel along the axis of the barrel.

"These results provide intriguing evidence that an extremely massive star exploded in two powerful, oppositely directed jets that were rich in iron," said Jonathan Keohane of NASA’s Jet Propulsion Laboratory at a press conference at the American Astronomical Society meeting in Denver. "This makes W49B a prime candidate for being the remnant of a gamma ray burst involving a black hole collapsar."

"The nearest known gamma-ray burst to Earth is several million light years away — most are billions of light years distant — so the detection of the remnant of one in our galaxy would be a major breakthrough," said William Reach, one of Keohane’s collaborators from the California Institute of Technology.

According to the collapsar theory, gamma-ray bursts are produced when a massive star runs out of nuclear fuel and the star’s core collapses to form a black hole surrounded by a disk of extremely hot, rapidly rotating, magnetized gas. Much of this gas is pulled into the black hole, but some is flung away in oppositely directed jets of gas traveling at near the speed of light.

An observer aligned with one these jets would see a gamma-ray burst, a blinding flash in which the concentrated power equals that of ten quadrillion Suns for a minute or so. The view perpendicular to the jets is a less astonishing, although nonetheless spectacular supernova explosion. For W49B, the jet is tilted out of the plane of the sky by about 20 degrees.

Four rings about 25 light years in diameter can be identified in the infrared image. These rings, which are due to warm gas, were presumably flung out by the rapid rotation of the massive star a few hundred thousand years before the star exploded. The rings were pushed outward by a hot wind from the star a few thousand years before it exploded.

Chandra’s image and spectral data show that the jets of multimillion-degree-Celsius gas extending along the axis of the barrel are rich in iron and nickel ions, consistent with their being ejected from the center of the star. This distinguishes the explosion from a conventional type II supernova in which most of the Fe and Ni goes into making the neutron star, and the outer part of the star is what is flung out. In contrast, in the collapsar model of gamma ray bursts iron and nickel from the center is ejected along the jet.

At the ends of the barrel, the X-ray emission flares out to make a hot cap. The X-ray cap is surrounded by a flattened cloud of hydrogen molecules detected in the infrared. These features indicate that the shock wave produced by the explosion has encountered a large, dense cloud of gas and dust.

The scenario that emerges is one in which a massive star formed from a dense cloud of dust, shone brightly for a few million years while spinning off rings of gas and pushing them away, forming a nearly empty cavity around the star. The star then underwent a collapsar-type supernova explosion that resulted in a gamma-ray burst.

The observations of W49B may help to resolve a problem that has bedeviled the collapsar model for gamma-ray bursts. On the one hand, the model is based on the collapse of a massive star, which is normally formed from a dense cloud. On the other hand, observations of the afterglow of many gamma-ray bursts indicate that the explosion occurred in a low-density gas. Based on the W49B data, the resolution proposed by Keohane and colleagues is that the star had carved out an extensive low-density cavity in which the explosion subsequently occurred.

"This star appears to have exploded inside a bubble it had created," said Keohane. "In a sense, it dug its own grave."

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | MSFC
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>