Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough Research to Improve Forecasts of Sunspot Cycle

01.06.2004


Using a new computer model of the Sun, scientists have begun work on a groundbreaking forecast of the next cycle of sunspots. Mausumi Dikpati of the National Center for Atmospheric Research (NCAR) announced new research leading to an improved forecast of cycle 24 at the annual meeting of the American Astronomical Society (AAS) in Denver. Predicting features of the solar cycle may help society anticipate sunspots and associated solar storms, which can disrupt communications and power systems and expose astronauts to high amounts of radiation.


A map of observed solar magnetic fields from the National Solar Observatory (top) correlates closely with a new NCAR model. Both images show the longitudinal averages of the fields. NCAR scientists are using the Predictive Flux-transport Dynamo Model to make predictions about solar cycle 24, which will probably begin about 2007 to 2008. (Image courtesy Mausumi Dikpati, Giuliana de Toma, Peter Gilman, and Oran White, all of NCAR; and Charles Arge of CU-Boulder and NOAA.)



The forecast draws on research by scientists at NCAR’s High Altitude Observatory indicating that the evolution of sunspots is caused by a current of plasma, or electrified gas, that circulates between the Sun’s equator and its poles over a number of years. The forecasters believe the next solar cycle will begin in 2007 to 2008 if the plasma circulation, which has slowed down during the present solar cycle, continues to decelerate. That would mean cycle 24 would begin about a half-year later than if the cycles followed the standard 11-year span.

“We will spend the next several months incorporating additional plasma flow data into our model to determine the rising pattern of cycle 24,” explains Dikpati, a leader of the research team. “Our focus will be on when the cycle is likely to reach maximum and cause geomagnetic storms in Earth’s atmosphere.”


The next sunspot cycle is referred to as cycle 24 because of a numbering system that dates back to the eighteenth century. Solar scientists have tracked these cycles for some time but have not been able to model them with sufficient accuracy to make long-term predictions.

The team’s computer model, known as the Predictive Flux-transport Dynamo Model, successfully accounts for the 11-year duration of the solar cycle as well as such mysterious events as the reversal of the Sun’s magnetic north and south poles that occurs toward the end of each solar cycle.

The research may represent a breakthrough in helping society better prepare for solar storms. It focuses on the meridional flow pattern of plasma, which circulates between the equator and the poles over a period of about 17 to 22 years and is believed to transport imprints of sunspots that occurred over the previous two sunspot cycles. By analyzing these past solar cycles, scientists hope eventually to forecast sunspot activity about two solar cycles, or 22 years, into the future.

The work also may have implications for understanding stars that have similar properties to the Sun. Observations have shown that the faster such G stars rotate, the more disturbances they experience. This may indicate that the plasma flow on such stars is sped up, thereby transporting sunspots more quickly and creating more stellar storms. “In all G stars, a similar dynamo may be operating,” Dikpati says.

The model incorporates the current of plasma, which acts as a sort of conveyor belt of sunspots. The sunspot process begins with tightly concentrated magnetic field lines in the solar convection zone (the outermost layer of the Sun’s interior). They rise to the surface at low latitudes and form bipolar sunspots, which are regions of concentrated magnetic fields. When these sunspots decay, they imprint the moving plasma with a type of magnetic signature. As the plasma nears the poles, it sinks about 200,000 kilometers (124,000 miles) back to the convection zone and starts returning toward the equator at a speed of about one meter (three feet) per second or slower. The increasingly concentrated fields become stretched and twisted by the internal rotation of the Sun as they near the equator, gradually becoming less stable than the surrounding plasma. This eventually causes coiled-up magnetic field lines to rise up, tear through the Sun’s surface, and create new sunspots.

Since the plasma flows toward the equator, the theory explains why sunspots appear mostly in the Sun’s midlatitudes early in the solar cycle and then gradually become more common near the equator. Sunspots also become increasingly powerful with the progress of the solar cycle because the continuous shearing of the imprints of the magnetic fields by the denser plasma beneath the surface of the Sun increases the strength of the spot-producing magnetic fields.

In addition to Dikpati, the team includes NCAR scientists Giuliana de Toma, Peter Gilman, and Oran White, as well as Nick Arge of the University of Colorado and the National Oceanic and Atmospheric Administration. The NCAR team has received funding from the National Science Foundation and a NASA Living with a Star grant for its research. The National Center for Atmospheric Research and UCAR Office of Programs are operated by UCAR under the sponsorship of the National Science Foundation and other agencies.

Anatta | UCAR

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>