Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NCAR Instrument Gets Breakthrough View of Sun’s Magnetic Halo

01.06.2004


A new instrument developed at the National Center for Atmospheric Research (NCAR) has captured landmark imagery of fast-evolving magnetic structures in the solar atmosphere. Steven Tomczyk (NCAR High Altitude Observatory) presented the images on Monday, May 31, at the annual meeting of the American Astronomical Society (AAS) in Denver.


These images show the brightness, magnetic field strength, and Doppler velocity of an erupting solar prominence taken with the Coronal Multi-Channel Polarimeter on March 9, 2004. The images were taken in a wavelength region in the near-Infrared spectrum corresponding to emission from Helium atoms. Positive and negative polarities of magnetic fields are indicated by the yellow and white colors of the middle image, while velocities directed towards and away from the observer are indicated by the blue and red colors of the rightmost figure.



Animations from the coronal multichannel polarimeter, or CoMP, reveal turbulent, high-velocity magnetic features spewing outward from the Sun’s surface. A sample animation can be viewed at the Web site below. The National Science Foundation, NCAR’s primary sponsor, is providing funding for the instrument.

CoMP is expected to provide the best data to date on magnetic structures in the solar corona, the extremely hot halo around the Sun that becomes visible during eclipses. "People have measured coronal magnetism before," says Tomczyk, "but we believe this is the first time it’s being done in a time sequence like this, where you can see an evolving structure. I think we’re making important steps and demonstrating that this technology works."


Data from CoMP will help solar physicists relate magnetism in the corona to features emerging from the Sun, such as prominences and coronal mass ejections. Such features are the sources of "space weather," the solar storms that can disable electric grids and satellites and interfere with radio communications.

"CoMP will deliver measurable benefits to the nation and the global space physics community," says Paul Bellaire, program director for NSF’s solar terrestrial research. "Space weather forecasters around the world provide tailored information to managers and policy makers responsible for the high tech infrastructure supporting our orbiting and Earth-based telecommunications, navigation, and power grid systems. CoMP’s solar corona imaging capability will be a valuable tool for these forecasters, as well as for researchers of the near-Earth space environment, since the Sun is the driving force behind all space weather."

The CoMP data being presented at the AAS meeting were collected during tests in January and March at the National Solar Observatory in Sunspot, New Mexico. Further tests are being conducted this month.

CoMP uses a telescope with a lens roughly eight inches wide to gather and analyze light from the corona, which is much dimmer than the Sun itself. It tracks magnetic activity around the entire edge of the Sun, covering much more area than previous instruments. It also collects data far more often than its predecessors—as frequently as a measurement every 15 seconds.

Closer to the Sun’s surface, magnetism has been traced for over a decade by ground- and space-based instruments. These devices infer the magnetic field by measuring several components of visible radiation. Until recently, though, there was little hope of using this technique to analyze magnetism in the Sun’s corona. Although the corona’s temperatures are scorching (as high as 1.8 million degrees Fahrenheit, or 1.0 million degrees Celsius), the corona itself is far too thin to yield a strong signal. However, a new generation of super-sensitive, low-noise infrared sensors made CoMP possible.

The NCAR team also devised a way to take images in two wavelengths of light at the same time. This allows scientists to filter out light scattered by Earth’s atmosphere into the telescope’s field of vision while preserving the faint signal from the corona.

CoMP’s developers hope to pair the instrument with a larger telescope. "Ultimately you want to gather more light," says Tomczyk. "This would give us more detail and allow us to gather data faster, so that both the temporal and spatial resolution could be improved."

Anatta | NCAR
Further information:
http://www.ucar.edu/news/releases/2004/magnetic.shtml

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>