Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying On The Path - One Atom At A Time

28.05.2004


New percolation model may allow researchers to study biochemistry at the atomic level

A new report in the May 24 Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences announces a mathematical model that will help researchers understand "cell signaling" and learn how single atoms travel along the circuitous pathways in a cell.

The model is a new approach to look at percolation-the flow of a liquid or small particle through a porous material. In the simulation, materials pass through fields of complex, three- dimensional shapes, a scenario that is closer to realworld environments than existing two-dimensional models and models incorporating simpler shapes.

The model was developed by Ann Marie Sastry and Yun-Bo Yi, both of the University of Michigan. The researchers will use their findings in a larger study that will deploy sensor proteins inside a cell where the nanoscale devices will track the paths of ions.

The model reveals how the sensors might interact with the miniscule ions that contribute to such diseases as stroke, cardiovascular disease and cancer. With the proper experimental design, the researchers may be able to watch fundamental chemical reactions-at the molecular level-as they occur in living cells.

In addition to biological applications, the simulation will help researchers develop new materials by revealing better ways to craft porous substances. By understanding the properties of these types of materials, researchers can enhance conductivity in batteries, flow paths in filters and numerous other percolation mechanisms.

Sastry won a 1997 NSF Presidential Early Career Award for Scientists and Engineers (PECASE), the highest honor bestowed by the United States government on scientists and engineers beginning their independent research careers. The NSF support from that award contributed to the development of the percolation model.

Support for the work was also provided by the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research through the Synthetic Multifunctional Materials Program, managed by Leo Christodoulou of DARPA, and the W.M. Keck Foundation.

NSF comments regarding the Sastry research group: "With her PECASE award, Ann Marie Sastry has expanded her research focus from a single area in mechanical engineering, materials processing, into a broad exploration to uncover fundamental knowledge. She has demonstrated an ability to take advantage of support to move beyond her own initial training and move out to address societal needs." - Delcie Durham, program director in NSF’s Division of Design, Manufacture and Industrial Innovation who oversaw Sastry’s five-year award

"Because of her interests and abilities, Sastry has attracted a diverse team of students and guided them to address core areas within mechanical engineering. Sastry has expanded her research to address fundamental issues in mathematics, biology and energy." - Delcie Durham

"Sastry has been an articulate voice for manufacturing as a viable research and educational endeavor and a proponent of diversity as a critical component of these efforts." -

Delcie Durham | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa

More articles from Physics and Astronomy:

nachricht Study offers new theoretical approach to describing non-equilibrium phase transitions
27.04.2017 | DOE/Argonne National Laboratory

nachricht SwRI-led team discovers lull in Mars' giant impact history
26.04.2017 | Southwest Research Institute

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>