Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Staying On The Path - One Atom At A Time

28.05.2004


New percolation model may allow researchers to study biochemistry at the atomic level

A new report in the May 24 Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences announces a mathematical model that will help researchers understand "cell signaling" and learn how single atoms travel along the circuitous pathways in a cell.

The model is a new approach to look at percolation-the flow of a liquid or small particle through a porous material. In the simulation, materials pass through fields of complex, three- dimensional shapes, a scenario that is closer to realworld environments than existing two-dimensional models and models incorporating simpler shapes.

The model was developed by Ann Marie Sastry and Yun-Bo Yi, both of the University of Michigan. The researchers will use their findings in a larger study that will deploy sensor proteins inside a cell where the nanoscale devices will track the paths of ions.

The model reveals how the sensors might interact with the miniscule ions that contribute to such diseases as stroke, cardiovascular disease and cancer. With the proper experimental design, the researchers may be able to watch fundamental chemical reactions-at the molecular level-as they occur in living cells.

In addition to biological applications, the simulation will help researchers develop new materials by revealing better ways to craft porous substances. By understanding the properties of these types of materials, researchers can enhance conductivity in batteries, flow paths in filters and numerous other percolation mechanisms.

Sastry won a 1997 NSF Presidential Early Career Award for Scientists and Engineers (PECASE), the highest honor bestowed by the United States government on scientists and engineers beginning their independent research careers. The NSF support from that award contributed to the development of the percolation model.

Support for the work was also provided by the Defense Advanced Research Projects Agency (DARPA) and the Office of Naval Research through the Synthetic Multifunctional Materials Program, managed by Leo Christodoulou of DARPA, and the W.M. Keck Foundation.

NSF comments regarding the Sastry research group: "With her PECASE award, Ann Marie Sastry has expanded her research focus from a single area in mechanical engineering, materials processing, into a broad exploration to uncover fundamental knowledge. She has demonstrated an ability to take advantage of support to move beyond her own initial training and move out to address societal needs." - Delcie Durham, program director in NSF’s Division of Design, Manufacture and Industrial Innovation who oversaw Sastry’s five-year award

"Because of her interests and abilities, Sastry has attracted a diverse team of students and guided them to address core areas within mechanical engineering. Sastry has expanded her research to address fundamental issues in mathematics, biology and energy." - Delcie Durham

"Sastry has been an articulate voice for manufacturing as a viable research and educational endeavor and a proponent of diversity as a critical component of these efforts." -

Delcie Durham | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>