Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio astronomy gets connected

25.05.2004


Work has started today (May 25th) on the construction of an optical fibre network which will connect five radio telescopes to the giant 76-m Lovell Telescope at Jodrell Bank Observatory, operated by The University of Manchester in rural Cheshire, allowing it to operate with vastly improved sensitivity.


The 76-m Lovell Telescope



This e-MERLIN network will operate as single radio telescope spanning 217 km, with unprecedented sensitivity provided by the enormous data rates carried by the optical fibres. The combination of high resolution due to the large separations and high sensitivity will make e-MERLIN a world-leading astronomical facility, continuing the pioneering spirit established by Sir Bernard Lovell over 50 years ago, and maintaining Jodrell Bank at the forefront of astronomical research well into the 21st century.

The network will use trunk fibres largely provided by Global Crossing UK with new fibre links from each telescope to the trunks being constructed by Fujitsu Telecommunications Europe. The total data rate carried by the network will be a continuous and sustained 150 Gb/s - about five times the total UK public internet traffic. Finding a way to provide a data network of this capacity on a national scale, reaching out to rural telescope sites, within the very limited project budget has been the largest challenge facing the e-MERLIN project. Astronomers and engineers at Jodrell Bank are delighted to have found a technical and commercial solution which meets their needs.


Dr Simon Garrington, project manager for e-MERLIN explained: “In an array like MERLIN, the network which transports the data is performing the same function as the curved dish of a single large radio telescope, bringing the radio waves to a common focus. With our present links, we are only able to transport less than half of one percent of the signal collected by our new receivers to the correlator at Jodrell Bank but with the new fibre network we will be able to transport an entire 4 GHz band back to Jodrell.”

The MERLIN network was first established in 1980 and is now operated as a national facility by the University of Manchester on behalf of the Particle Physics and Astronomy Research Council. It combines radio telescopes near Cambridge, Worcester and Oswestry with two telescopes in Cheshire as well as the Lovell Telescope. Radio arrays like MERLIN produce detailed radio images of stars and galaxies. MERLIN’s strength has been the high resolution provided by its 217-km span - it is the only telescope on the ground which can routinely provide images with as much detail as the Hubble Space Telescope but at radio rather than optical wavelengths. However, its sensitivity has been limited by the present connections from the remote telescopes to Jodrell Bank.

Professor Ian Halliday, Chief Executive of PPARC said, "With the upgrade to e-MERLIN, the UK’s National Facility for radio astronomy has ensured that it remains at the forefront of international research, enabling UK astronomers to make important contributions to advancing our understanding of the Universe."

By linking the telescopes with optical fibre, the capacity of these connections will be increased by a factor of more than 100 and together with the newly resurfaced Lovell Telescope and improved receivers at each telescope, e-MERLIN’s sensitivity will be boosted by more than a factor of 30, guaranteeing a wealth of new discoveries as astronomers from the UK and around the world use it to zoom in on distant stars and galaxies.

Prof Philip Diamond, Director of MERLIN, said: “Radio astronomy is crucial to the understanding of our universe because radio waves penetrate the clouds of cosmic dust and gas that hamper observations with optical telescopes. Our deepest observations with existing instruments have given us glimpses of distant galaxies in the process of formation and we are confident that e-MERLIN will reveal a radio sky teeming with such galaxies, any one of which we will be able to study in detail.”

Roshene McCool, the fibre-optic engineer at Jodrell Bank who is designing the transmission equipment for the network said: “The fibre network provided by Fujitsu and Global Crossing allows us to use transmission equipment and protocols which we have developed with colleagues around the world specifically for radio astronomy data.”
Phil Metcalf, managing director of Global Crossing Europe, said: “The high-capacity backbone linking the e-MERLIN array will give UK astronomers the networking platform they need to open up a new era of discovery.”

Shigeyuki Unagami, managing director of Fujitsu Telecommunications Europe described the project as “a successful harmony of pioneering science, IT and telecommunications”.

The e-MERLIN project has been jointly funded by The University of Manchester, The Northwest Development Agency (NWDA), the Particle Physics and Astronomy Research Council (PPARC), UMIST and The University of Cambridge.

To celebrate the start of work on the fibre network a reception was held today at Jodrell Bank Observatory with representatives from The University of Manchester, Global Crossing, Fujitsu and the funding partners.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk/Nw/eMERLIN.asp

More articles from Physics and Astronomy:

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

nachricht Home computers discover a record-breaking pulsar-neutron star system
08.12.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>