Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio astronomy gets connected

25.05.2004


Work has started today (May 25th) on the construction of an optical fibre network which will connect five radio telescopes to the giant 76-m Lovell Telescope at Jodrell Bank Observatory, operated by The University of Manchester in rural Cheshire, allowing it to operate with vastly improved sensitivity.


The 76-m Lovell Telescope



This e-MERLIN network will operate as single radio telescope spanning 217 km, with unprecedented sensitivity provided by the enormous data rates carried by the optical fibres. The combination of high resolution due to the large separations and high sensitivity will make e-MERLIN a world-leading astronomical facility, continuing the pioneering spirit established by Sir Bernard Lovell over 50 years ago, and maintaining Jodrell Bank at the forefront of astronomical research well into the 21st century.

The network will use trunk fibres largely provided by Global Crossing UK with new fibre links from each telescope to the trunks being constructed by Fujitsu Telecommunications Europe. The total data rate carried by the network will be a continuous and sustained 150 Gb/s - about five times the total UK public internet traffic. Finding a way to provide a data network of this capacity on a national scale, reaching out to rural telescope sites, within the very limited project budget has been the largest challenge facing the e-MERLIN project. Astronomers and engineers at Jodrell Bank are delighted to have found a technical and commercial solution which meets their needs.


Dr Simon Garrington, project manager for e-MERLIN explained: “In an array like MERLIN, the network which transports the data is performing the same function as the curved dish of a single large radio telescope, bringing the radio waves to a common focus. With our present links, we are only able to transport less than half of one percent of the signal collected by our new receivers to the correlator at Jodrell Bank but with the new fibre network we will be able to transport an entire 4 GHz band back to Jodrell.”

The MERLIN network was first established in 1980 and is now operated as a national facility by the University of Manchester on behalf of the Particle Physics and Astronomy Research Council. It combines radio telescopes near Cambridge, Worcester and Oswestry with two telescopes in Cheshire as well as the Lovell Telescope. Radio arrays like MERLIN produce detailed radio images of stars and galaxies. MERLIN’s strength has been the high resolution provided by its 217-km span - it is the only telescope on the ground which can routinely provide images with as much detail as the Hubble Space Telescope but at radio rather than optical wavelengths. However, its sensitivity has been limited by the present connections from the remote telescopes to Jodrell Bank.

Professor Ian Halliday, Chief Executive of PPARC said, "With the upgrade to e-MERLIN, the UK’s National Facility for radio astronomy has ensured that it remains at the forefront of international research, enabling UK astronomers to make important contributions to advancing our understanding of the Universe."

By linking the telescopes with optical fibre, the capacity of these connections will be increased by a factor of more than 100 and together with the newly resurfaced Lovell Telescope and improved receivers at each telescope, e-MERLIN’s sensitivity will be boosted by more than a factor of 30, guaranteeing a wealth of new discoveries as astronomers from the UK and around the world use it to zoom in on distant stars and galaxies.

Prof Philip Diamond, Director of MERLIN, said: “Radio astronomy is crucial to the understanding of our universe because radio waves penetrate the clouds of cosmic dust and gas that hamper observations with optical telescopes. Our deepest observations with existing instruments have given us glimpses of distant galaxies in the process of formation and we are confident that e-MERLIN will reveal a radio sky teeming with such galaxies, any one of which we will be able to study in detail.”

Roshene McCool, the fibre-optic engineer at Jodrell Bank who is designing the transmission equipment for the network said: “The fibre network provided by Fujitsu and Global Crossing allows us to use transmission equipment and protocols which we have developed with colleagues around the world specifically for radio astronomy data.”
Phil Metcalf, managing director of Global Crossing Europe, said: “The high-capacity backbone linking the e-MERLIN array will give UK astronomers the networking platform they need to open up a new era of discovery.”

Shigeyuki Unagami, managing director of Fujitsu Telecommunications Europe described the project as “a successful harmony of pioneering science, IT and telecommunications”.

The e-MERLIN project has been jointly funded by The University of Manchester, The Northwest Development Agency (NWDA), the Particle Physics and Astronomy Research Council (PPARC), UMIST and The University of Cambridge.

To celebrate the start of work on the fibre network a reception was held today at Jodrell Bank Observatory with representatives from The University of Manchester, Global Crossing, Fujitsu and the funding partners.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk/Nw/eMERLIN.asp

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>