Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tightly focused laser light generates nonlinear effects and rainbow of color

21.05.2004


Physicists at Lehigh University achieve supercontinuum generation in nonlinear fibers

Two physicists at Lehigh University have produced a rainbow of visible and invisible colors by focusing laser light in a specially designed optical fiber that confines light in a glass core whose diameter is 40 times smaller than that of a human hair.

Jean Toulouse, professor of physics, and Iavor Veltchev, research associate in Lehigh’s Center for Optical Technologies (COT), are among the few scientists in the world to achieve and study the phenomenon, which is called "supercontinuum generation in nonlinear fibers."



The phenomenon can be observed in a new class of optical fibers, called photonic crystal fibers. PCFs consist of a tiny solid glass core surrounded by a cladding, or casing, that contains air holes along the length of the fiber.

When Toulouse and Veltchev run a demonstration in their lab, incoming infrared (IR) light waves, which are invisible to the human eye, are converted to visible lightwaves. As the IR light propagates, or spreads, through a 1-meter-long fiber, the light appears, first orange, then yellow and finally green.

IR and UV light of varying wavelengths are also generated at both ends of the visible spectrum.

The visible lightwaves emerge from the fiber as white light, which contains all the colors of the spectrum. The colors are dispersed by the precisely spaced grooves of a diffraction grating, in the same way that water droplets create a rainbow.

Potential uses for supercontinuum generation in nonlinear fiber optics range from medical applications, including non-invasive imaging of live tissues, to all-optical networks, in which light waves, not electronics, perform switching, routing, amplifying and other functions.

Nonlinear optical effects are the main focus of the COT’s All-Optical Network research thrust, which Toulouse directs. Toulouse receives funding from the National Science Foundation.

Supercontinuum generation is not observed in conventional optical fibers, Toulouse says, because their optical intensity (the optical power per unit area) is too low. In the new fibers, the light is confined in a much smaller core and the optical intensity is much greater. This modifies the optical properties of the medium (the fiber), creating new, nonlinear optical effects.

Linear optical effects occur when the optical intensity of light is not great enough to alter the properties of the medium (especially the speed at which the light propagates) through which the light is passing.

Nonlinear effects occur when the light’s optical intensity alters the properties of the medium, which, in turn, affects the manner in which the light itself propagates. The increased intensity, says Veltchev, also causes a corresponding increase in the refraction, or bending, of the light wave by the medium.

Nonlinear effects cause different parts of a wave to move at different velocities and distort the light’s periodic sinusoidal pattern. These effects generate new wavelengths and result in what Toulouse calls an "avalanche effect" - as more wavelengths are generated, more distortion results, leading to yet more wavelengths.

"What we see in the nonlinear regime," says Toulouse, "is that if we send light in at one wavelength, we generate many other wavelengths" - thus achieving supercontinuum generation in nonlinear fiber optics.

The high optical intensity necessary for supercontinuum generation is achieved by the tight confinement of the incoming light wave in the extremely small core of the fiber, says Toulouse.

Toulouse and Veltchev begin their demonstration by using lenses to steer and focus the incident, or incoming, lightwaves with a wavelength (the distance between two adjacent crests of the wave) of approximately 800 nanometers (1 nm is one one-billionth of a meter). At 800 nm, the lightwaves fall within the infrared range and are not visible.

The incident lightwave, being powerful enough, creates nonlinear effects inside the glass fiber, generating new light waves with longer and shorter wavelengths (visible and multi-colored). This is caused by two factors. First, the light waves are confined to a solid glass core inside the optical fiber that measures only 2.5 microns in diameter. (A micron is one one-millionth of a meter; 2.5 microns is roughly one-fourtieth the thickness of a typical human hair.) By contrast, the core of a typical optical fiber, measures 10 microns in diameter. And a typical laser beam has a diameter of about 2 millimeters, almost 1,000 times greater than the diameter of the Lehigh researchers’ new optical fiber core.

The optical intensity (power transmitted per unit area) in the core of these new fibers, says Toulouse, is thus almost 1 million times greater than the intensity in the core of a typical laser, given that the area of a circle equals p times the radius squared.

The creation of nonlinear effects is also triggered by air holes in the cladding around the fiber core. The holes force the light to remain confined inside the narrow glass core, Toulouse says, because "light hates to be in air when it can be in a medium where it travels more slowly."

The tight confinement of light inside the new PCFs forces the waves to propagate coherently (with a well-defined initial-phase relationship), thus producing the full spectrum of visible colors.

The optical fiber used by Toulouse and Veltchev costs up to several thousand dollars per meter, and is manufactured by only five companies in the world, several of which have ties to the COT.

Toulouse has contacts with other researchers who have achieved supercontinuum generation in nonlinear fibers. In 2002, he spent six months studying the nonlinear effects of new types of optical fibers at the University of Bath in England, with the very people who invented PCFs in 1992.

Veltchev has a Ph.D. in physics from the Free University of Amsterdam (The Netherlands) and will soon join the Fox Chase Cancer Research Center near Philadelphia on a project utilizing laser radiation in cancer treatment.

Kurt Pfitzer | EurekAlert!
Further information:
http://www.lehigh.edu/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>