Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover secret of dolphin speed

17.05.2004


How dolphins evolved to fly like birds under water



Physicists in Japan have discovered how the surface of a dolphin’s skin reduces drag and helps them glide smoothly and quickly through water. These findings could help scientists design faster, energy-efficient boats, ocean liners, and submarines. This research is published in the Institute of Physics journal, Journal of Turbulence.

Scientists have known for some time that dolphins have evolved streamlined bodies which help them reduce the pressure of water against their skin (known as the ’form drag’) as well as reducing friction (or ’friction drag’). Until now, no-one knew whether the soft flaky skin of a dolphin, which they shed once every 2 hours, also plays a vital part in helping them reduce these ’drags’ and travel faster.


To try and understand the role of the soft, flaky skin, researchers from the Kyoto Institute of Technology in Japan devised a detailed computer simulation which models the flow of water over a dolphin’s skin, modelling every individual flake of skin itself, and the way it peels off.

Professor Yoshimichi Hagiwara and colleagues found that the ’softness’ or ’waviness’ of the skin helps reduce drag caused by friction. They also discovered that the shedding of the skin itself reduces drag by disturbing tiny whirlpools of water called vortices, that occur in the flow around the surface of the dolphin and slow it down.

To test their simulation, they built a laboratory experiment which mimics dolphin skin using a ’wavy’ plate covered in tiny pieces of film that gradually peel off as water moves over the surface.

Professor Hagiwara said: "It’s really difficult to measure flow near swimming dolphins, so we designed an experiment that accurately reflects the way the surface layer of dolphin skin interacts with water flow over and around the dolphin".

He continued: "This research is important because it gives us greater insight into the mechanisms dolphins have evolved to cope with travelling through water, which is much harder than travelling quickly through air like birds do. This research could help us build boats, ocean liners and submarines using technology based on these natural solutions".

Professor Hagiwara and his team are now improving their models, and building a new test apparatus using a soft silicon-rubber wall, in the hope of mimicking dolphin skin even more precisely.

David Reid | IOP
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>