Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientist says clues to string theory may be visible in Big Bang aftermath

13.05.2004


Scientists studying the Big Bang say that it is possible that string theory may one day be tested experimentally via measurements of the Big Bang’s afterglow.

Richard Easther, assistant professor of physics at Yale University will discuss the possibility at a meeting at Stanford University Wednesday, May 12, titled “Beyond Einstein: From the Big Bang to Black Holes.” Easther’s colleagues are Brian Greene of Columbia University, William Kinney of the University at Buffalo, SUNY, Hiranya Peiris of Princeton University and Gary Shiu of the University of Wisconsin.

String theory attempts to unify the physics of the large (gravity) and the small (the atom). These are now described by two theories, general relativity and quantum theory, both of which are likely to be incomplete.



Critics have disdained string theory as a “philosophy” that cannot be tested. However, the results of Easther and his colleagues suggest that observational evidence supporting string theory may be found in careful measurements of the Cosmic Microwave Background (CMB), the first light to emerge after the Big Bang.

“In the Big Bang, the most powerful event in the history of the Universe, we see the energies needed to reveal the subtle signs of string theory,” said Easther.

String theory reveals itself only over extreme small distances and at high energies. The Planck scale measures 10-35 meters, the theoretical shortest distance that can be defined. In comparison, a tiny hydrogen atom, 10-10 meters across, is ten trillion trillion times as wide. Similarly, the largest particle accelerators generate energies of 1015 electron volts by colliding sub-atomic particles. This energy level can reveal the physics of quantum theory, but is still roughly a trillion times lower than the energy required to test string theory.

Scientists say that the fundamental forces of the Universe – gravity (defined by general relativity), electromagnetism, “weak” radioactive forces and “strong” nuclear forces (all defined by quantum theory) – were united in the high-energy flash of the Big Bang, when all matter and energy was confined within a sub-atomic scale. Although the Big Bang occurred nearly 14 billion years ago, its afterglow, the CMB, still blankets the entire universe and contains a fossilized record of the first moments of time.

The Wilkinson Microwave Anisotropy Probe (WMAP) studies the CMB and detects subtle temperature differences, within this largely uniform radiation, glowing at only 2.73 degrees Celsius above absolute zero. The uniformity is evidence of “inflation,” a period when the expansion of the Universe accelerated rapidly, around 10-33 seconds after the Big Bang. During inflation, the Universe grew from an atomic scale to a cosmic scale, increasing its size a hundred trillion trillion times over. The energy field that drove inflation, like all quantum fields, contained fluctuations. These fluctuations, locked into the cosmic microwave background like waves on a frozen pond, may contain evidence for string theory.

Easther and his colleagues compare the rapid cosmic expansion that occurred just after the Big Bang to enlarging a photograph to reveal individual pixels. While physics at the Planck scale made a “ripple” 10-35 meters across, thanks to the expansion of the Universe the fluctuation might now span many light years.

Easther stressed it is a long shot that string theory might leave measurable effects on the microwave background by subtly changing the pattern of hot and cold spots. However, string theory is so hard to test experimentally that any chance is worth trying. Successors to WMAP, such as CMBPol and the European mission, Planck, will measure the CMB with unprecedented accuracy.

The modifications to the CMB arising from string theory could deviate from the standard prediction for the temperature differences in the cosmic microwave background by as much as 1%. However, finding a small deviation from a dominant theory is not without precedent. As an example, the measured orbit of Mercury differed from what was predicted by Isaac Newton’s law of gravity by around seventy miles per year. General relativity, Albert Einstein’s law of gravity, could account for the discrepancy caused by a subtle warp in spacetime from the Sun’s gravity speeding Mercury’s orbit.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www-conf.slac.stanford.edu/einstein/
http://www.yale.edu/

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>