Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant galaxy’s violent past comes into focus

11.05.2004


Long-exposure images of the giant elliptical galaxy M87 by NASA’s Chandra X-ray Observatory, together with radio observations, have provided spectacular evidence of repetitive outbursts from the vicinity of the galaxy’s supermassive black hole. Magnetized rings, bubbles, plumes and jets ranging in size from a few thousand to a few hundred thousand light years point to ongoing violent activity for hundreds of millions of years.


Chandra image of the giant elliptical galaxy M87 (NASA/CXC)



"The hot X-ray emitting gas extending for hundreds of thousands of light years around M87 reveals a record of episodes of black hole activity," said Paul Nulsen of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. and an author of an Astrophysical Journal paper describing the latest Chandra observations. "With these detailed observations, we are beginning to understand how the central supermassive black hole transfers enormous amounts of energy over vast reaches of space."

M87, located in the middle of the Virgo galaxy cluster, is surrounded by an extensive atmosphere of multi-million degree Celsius gas. Chandra’s long-exposure image has allowed astronomers to see in more detail structures discovered by previous observations with Chandra and other X-ray telescopes, to discover new features, and to make specific comparisons with radio images, which trace the presence of high-energy electrons in a magnetic field.


The picture that emerges is one in which the infall of material toward a central supermassive black hole produces a magnetized jet of high-energy particles that blasts away from the vicinity of the black hole at near the speed of light. As a jet plows into the surrounding gas, a buoyant, magnetized bubble of high-energy particles is created, and an intense sound wave rushes ahead of the expanding bubble.

In Chandra’s image of M87, X-rays from the jet dominate the central region of the galaxy. The jet is thought to be pointed at a small angle toward the line of sight, out of the plane of the image. Bright arcs around dark cavities of faint X-ray emission appear to be gas that has been swept up on rising, buoyant bubbles that were created a few million years ago (in M87 time — M87 is 50 million light years from Earth). These bubbles, which rise like hot air from a fire or explosion in the atmosphere, show up as bright regions in radio images. An alternative interpretation, presented in the June 1, 2004 issue of Astrophysical Journal Letters by Hua Feng of Tsinghau University in China and colleagues, is that the rings are shock waves that surround the jet and are seen in projection.

An image processed to bring out faint features reveals two circular rings with radii of 45 thousand and 55 thousand light years, respectively. These features are likely sound waves produced by earlier explosions about 10 million and 14 million years ago, respectively. A very faint arc at an even larger distance has a probable age of 100 million years.

Spectacular, curved X-ray plumes extending from the upper left to the lower right illustrate in dramatic fashion how the central black hole can affect the galaxy and its environment over huge distances. The arm on the upper left extends more than 75 thousand light years, and the one on the lower right more than 100 thousand light years from the center of the galaxy. These features are thought to be gas carried out from the center of the galaxy on buoyant bubbles created by outbursts tens of millions of years ago.

A growing body of evidence from other galaxy clusters suggests that episodic outbursts from supermassive black holes in giant, centrally located galaxies are a common feature. These outbursts, which produce magnetized jets and bubbles of high energy particles, along with mammoth sound waves, could be due to the self-regulated inflow of gas into the black hole — gas around the black hole cools and flows inward to feed the black hole, producing an outburst which shuts down the inflow for a few million years, at which point the cycle begins again. Or, the cause could be a much more dramatic event, like the cannibalization of a smaller galaxy, with the subsequent merger of two supermassive black holes in the center.

The results from Nulsen’s team, which included William Forman and other colleagues from the CfA, were based on approximately 40 hours of Chandra observations with its Advanced CCD Imaging Spectrometer. Andrew Young of the University of Maryland in College Park, and colleagues, have published a paper identifying many of the X-ray features in M87 in the November 10, 2003 issue of The Astrophysical Journal based on a shorter Chandra observation.

NASA’s Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA’s Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Steve Roy | MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2004/04-135.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>