Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two Extremely Hot Exoplanets Caught in Transit

07.05.2004


VLT Measures Properties of New Jupiter-Size Objects in Very Close Orbits



Discovering other Worlds

During the past decade, astronomers have learned that our Solar System is not unique, as more than 120 giant planets orbiting other stars were discovered by radial-velocity surveys (cf. ESO PR 13/00, ESO PR 07/01, and ESO PR 03/03).


However, the radial-velocity technique is not the only tool for the detection of exoplanets. When a planet happens to pass in front of its parent star (as seen from the Earth), it blocks a small fraction of the star’s light from our view. The larger the planet is, relative to the star, the larger is the fraction of the light that is blocked.

It is exactly the same effect when Venus transits the Solar disc on June 8, 2004, cf. ESO PR 03/04 and the VT-2004 programme website. In the past centuries such events were used to estimate the Sun-Earth distance, with extremely useful implications for astrophysics and celestial mechanics.

Nowadays, planetary transits are gaining renewed importance. Several surveys are attempting to find the faint signatures of other worlds, by means of stellar photometric measurements, searching for the periodic dimming of a star as a planet passes in front of its disc.

One of these, the OGLE survey, was originally devised to detect microlensing events by monitoring the brightness of a very large number of stars at regular intervals. For the past four years, it has also included a search for periodical shallow "dips" of the brightness of stars, caused by the regular transit of small orbiting objects (small stars, brown dwarfs or Jupiter-size planets). The OGLE team has since announced 137 "planetary transit candidates" from their survey of about 155,000 stars in two southern sky fields, one in the direction of the Galactic Centre, the other within the Carina constellation.

Resolving the nature of the OGLE transits

The OGLE transit candidates were detected by the presence of a periodic decrease of a few percent in brightness of the observed stars. The radius of a Jupiter-size planet is about 10 times smaller than that of a solar-type star, i.e. it covers about 1/100 of the surface of that star and hence it blocks about 1 % of the stellar light during the transit.

The presence of a transit event alone, however, does not reveal the nature of the transiting body. This is because a low-mass star or a brown dwarf, as well as the variable brightness of a background eclipsing binary system seen in the same direction, may result in brightness variations that simulate the ones produced by an orbiting giant planet.

However, the nature of the transiting object may be established by radial-velocity observations of the parent star. The size of the velocity variations (the amplitude) are directly related to the mass of the companion object and therefore allow to discriminate between stars and planets as the cause of the observed brightness "dip".

In this way, photometric transit searches and radial-velocity measurements combine to become a very powerful technique to detect new exoplanets. Moreover, it is particularly useful for elucidating their characteristics. While the detection of a planet by the radial velocity method only yields a lower estimate of its mass, the measurement of the transit makes it possible to determine the exact mass, radius, and density of the planet.

The follow-up radial-velocity observations of the 137 OGLE transit candidates is not an easy task as the stars are comparatively faint (visual magnitudes around 16). This can only be done by using a telescope in the 8-10m class with a high-resolution spectrograph.

The nature of the two new exoplanets

A European team of astronomers therefore made use of the 8.2-m VLT Kueyen telescope. In March 2004, they followed 41 OGLE "top transit candidate stars" during 8 half-nights. They profited from the multiplex capacity of the FLAMES/UVES fiber link facility that permits to obtain high-resolution spectra of 8 objects simultaneously and measures stellar velocities with an accuracy of about 50 m/s.

While the vast majority of OGLE transit candidates turned out to be binary stars (mostly small, cool stars transiting in front of solar-type stars), two of the objects, known as OGLE-TR-113 and OGLE-TR-132, were found to exhibit small velocity variations. When all available observations - light variations, the stellar spectrum and radial-velocity changes - were combined, the astronomers were able to determine that for these two stars, the transiting objects have masses compatible with those of a giant planet like Jupiter.

Interestingly, both new planets were detected around rather remote stars in the Milky Way galaxy, in the direction of the southern constellation Carina. For OGLE-TR-113, the parent star is of F-type (slightly hotter and more massive than the Sun) and is located at a distance of about 6000 light-years. The orbiting planet is about 35% heavier and its diameter is 10% larger than that of Jupiter, the largest planet in the solar system. It orbits the star once every 1.43 days at a distance of only 3.4 million km (0.0228 AU). In the solar system, Mercury is 17 times farther away from the Sun. The surface temperature of that planet, which like Jupiter is a gaseous giant, is correspondingly higher, probably above 1800 degrees C.

The distance to the OGLE-TR-132 system is about 1200 light-years. This planet is about as heavy as Jupiter and about 15% larger (its size is still somewhat uncertain). It orbits a K-dwarf star (cooler and less massive than the Sun) once every 1.69 days at a distance of 4.6 million km (0.0306 AU). Also this planet must be very hot.

A new class of exoplanets

With the previously found planetary transit object OGLE-TR-56, the two new OGLE objects define a new class of exoplanets, still not detected by current radial velocity surveys: planets with extremely short periods and correspondingly small orbits. The distribution of orbital periods for "hot Jupiters" detected from radial velocity surveys seems to drop off below 3 days, and no planet had previously been found with an orbital period shorter than about 2.5 days.

The existence of the three OGLE planets now shows that "very hot Jupiters" do exist, even though they may be quite rare; probably about one such object for every 2500 to 7000 stars. Astronomers are truly puzzled how planetary objects manage to end up in such small orbits, so near their central stars.

Contrary to the radial velocity method which is responsible for the large majority of planet detections around normal stars, the combination of transit and radial-velocity observations makes it possible to determine the true mass, radius and thus the mean density of these planets.

Great expectations

The two new objects double the number of exoplanets with known mass and radius (the three OGLE objects plus HD209458b, which was detected by the radial velocity surveys but for which a photometric transit was later observed). The new information about the exact masses and radii is essential for understanding the internal physics of these planets.

The complementarity of the transit and radial velocity techniques now opens the door towards a detailed study of the true characteristics of exoplanets. Space-based searches for planetary transits - like the COROT and KEPLER missions - together with ground-based radial velocity follow-up observations will in the future lead to the characterization of other worlds as small as our
Earth.

Richard West | ESO
Further information:
http://www.eso.org/outreach/press-rel/pr-2004/pr-11-04.html

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>