Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research links magnetism, gamma-ray burst phenomenon

03.05.2004


Rice-Los Alamos team find remarkable similarity between data from sky and computer



In the early years of the Space Age, astronomers made the startling discovery that short, transient flashes of gamma rays occurred randomly in the sky every night. Only within the past decade have scientists uncovered evidence to associate gamma-ray bursts with the death cries of massive stars from the edge of the universe. But they’ve had very few clues about how a "hypernova" or "collapsar" might produce such energetic bursts.

New findings from Rice University and Los Alamos National Laboratory (LANL) about a previously undiscovered particle acceleration mechanism indicate that strong magnetic fields may play a crucial role in the formation of gamma ray bursts. The research is published in today’s issue of the journal Physical Review Letters.


"When we compared the signatures in energy and in space-and-time of the particles accelerated by the newly discovered mechanism, called the ’diamagnetic relativistic pulse accelerator’, with the telltale signatures of cosmic gamma-ray bursts, we found that they were remarkably similar," said paper co-author Edison Liang, the Andrew Hays Buchanan Professor of Astrophysics at Rice.

The diamagnetic relativistic pulse accelerator is a process that occurs when a bubble of strong magnetic field and electron-positron plasmas. (Positrons are the positively-charged "antimatter" version of electrons) is suddenly released and allowed to expand outward near the speed of light. The resulting explosion creates an intense electromagnetic pulse together with an intense electrical current. This electrical current, also called a "drift current" because it flows perpendicular to the magnetic field, then helps to trap the expanding plasma near the surface and accelerate it. Most of the magnetic energy is eventually converted into fast-moving particles travelling near the speed of light. These particles then radiate away their new-found energy as gamma rays.

Liang and co-author Kazumi Nishimura of LANL began collaborating on computer simulations of electromagnetic explosions two years ago, but their latest simulations were the first that looked at the long-term behavior of the plasma pulse created by the explosion. They discovered three unusual physical properties. First, rather than creating a large, single burst of energy, the plasma pulse divided repeatedly over time, creating a rapid succession of smaller energy bursts -- successions that bear striking similarity to the patterns of gamma-ray bursts seen in space. Second, the energies of the particles blown out by the electromagnetic explosion are distributed in a unique way that is also similar to the gamma-ray energy distributions found in cosmic gamma-ray bursts. The final and most dramatic finding is that there is a simple mathematical relation between the average energy of the accelerated particles, the strength of the magnetic field and the time they have been expanding since the explosion. When this equation is applied to gamma-ray bursts, it gives results that are also consistent with observed data.

"It’s widely agreed that most gamma-ray bursts result from gigantic explosions related to stellar deaths, but the scientific community has been divided over the precise way the bursts are formed," said Liang. "Some believe they’re created through non-magnetic hydrodynamic explosions, while others believe that magnetic field plays a key role. Until now, neither side could offer a concrete mechanism that naturally explains these unique properties. We believe we’ve demonstrated that in these computer simulations."

Liang and Nishimura’s computer simulation only describes how an exploding bubble of strongly magnetized electron-positron plasma might lead to bursts of gamma rays similar to those seen in the sky. The simulation does not address how such a magnetic bubble might form in the heart of a dying star, but others groups are working on such models, said Liang.

"For example, matter spiraling into a newly formed black hole located at the heart of a dying star could wind up the magnetic field of the stellar core to form such bubbles," said Liang. "Like air bubbles in the ocean, these bubbles of magnetized plasma, also called "Poynting flux", would have a tendency to rise to the surface of the star at near the speed of light. Suddenly freed from the confining pressure of the star’s envelope, these bubbles would expand and launch the pulse accelerator process."

NASA and the Department of Energy funded the research.

Jade Boyd | EurekAlert!
Further information:
http://chico.rice.edu/

More articles from Physics and Astronomy:

nachricht Solar wind impacts on giant 'space hurricanes' may affect satellite safety
19.09.2017 | Embry-Riddle Aeronautical University

nachricht Integrated lasers on different surfaces
19.09.2017 | The Agency for Science, Technology and Research (A*STAR)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

IVAM’s LaserForum visits the Swiss canton of St. Gallen with the topic ultrashort pulse lasers

06.09.2017 | Event News

 
Latest News

The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships

19.09.2017 | Earth Sciences

Digging sensors out of an efficiency hole

19.09.2017 | Materials Sciences

Solar wind impacts on giant 'space hurricanes' may affect satellite safety

19.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>