Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists post a lower speed limit for magnetic switching

26.04.2004


The picture shows the 2 mile long linear accelerator as the background and the experiment and results superimposed as a schematic. The schematic shows the magnetic field surrounding the beam and the magnetic pattern (which is of micrometre size) written into a sample by the beam.


The speed of magnetic recording – a crucial factor in a computer’s power and multimedia capabilities – depends on how fast one can switch a magnet’s poles. An experiment at the Stanford Synchrotron Radiation Laboratory (SSRL) found that the ultimate speed of magnetic switching is at least 1,000 times slower than previously expected. The result, which appears in the April 22 issue of the journal Nature, has implications for future hard disk computer drive technologies.

In the push toward ever-faster magnetic recording, experts expected to find a physical limit, a threshold speed beyond which materials would respond chaotically. “If you had asked me a year ago, ‘How fast does one have to create a pulse that does not switch magnetization?’ my answer would have been one femtosecond (one thousandth of a trillionth of a second),” said Jo Stöhr, Deputy Director of SSRL. “Chaotic behavior was not expected in this experiment, which ran in the picosecond (trillionth-of-a-second) range.”

The SSRL is a division of the Stanford Linear Accelerator Center (SLAC), a U.S. Department of Energy (DOE) research facility operated by Stanford University. The collaboration for the Nature paper was led by SSRL scientists Hans Christoph Siegmann and Professor Joachim Stöhr , and included researchers from Seagate Technology, the world’s largest manufacturer of hard disk computer drives.



“This is a fascinating experiment that has given completely new information on the limits of magnetic switching,” said Raymond L. Orbach, director of the DOE Office of Science. “It is also a wonderful illustration of the value of very different disciplines working together: scientists from a synchrotron light source using a high energy physics linear accelerator to do an experiment on magnetism.”

Seagate’s Head of Media Research, Dieter Weller underlined, “This collaboration has evolved, over time, into a very fruitful exchange between academia and industry, Aligning ourselves with such high caliber people as Hans Christoph Siegmann and Jo Stöhr is a real feat for us.”

In a computer hard drive, a writing head hovers over a disk that’s rapidly spinning – at up to 15,000 rotations per minute, or 150 times faster than a CD player. An electric current running in the head creates a magnetic field, which records data by turning tiny areas of the disk’s surface into microscopic magnets. The disk is coated with a special, grainy material that allows only two, opposite directions of the magnetization, representing the 0 or 1 of a basic unit of data, or bit. High recording speed requires the coating material to respond and switch its poles quickly enough to record each bit reliably.

The experiment relied on the unique capabilities of SLAC’s 2-mile-long linear accelerator (linac). The beam of electrons produced by the linac played the role of the electric current in a hard drive’s writing head, based on the fact that moving electrons carry along a magnetic field that swirls around the electrons’ path. The idea came to Siegmann in the mid-1990’s, literally out of a lightning bolt: He realized that the linac could magnetically record the same way that a lightning leaves a magnetic signature when it strikes a rock.

The linac’s beam, made of tightly packed bunches of electrons traveling close to light speed, creates magnetic pulses that are some of the world’s strongest – at up to 10 Tesla, or 200,000 times the strength of the Earth’s magnetic field – and briefest, at 2 picoseconds (2 trillionths of a second).

The researchers shot up to seven electron bunches in a row through samples of magnetic recording media. In the photographs of the results, they expected to see dark and light areas, neatly arranged in concentric rings around the focus point of the beam. The two colors would correspond to grains magnetized in either of the two possible directions. Instead, the pictures showed all shades of grey, indicating that some grains had switched while others had not.

They observed similar results with different types of magnetic grains, or even with a continuous magnetic film. With the help of theoretical physicist Alexander Kashuba of the Landau Institute for Theoretical Physics in Moscow, the SSRL researchers realized that their data bore the signature of a chaotic system – one whose parts behave in a random, unpredictable way. “That’s the new thing,” said Siegmann. “It’s like roulette. You can’t tell in advance whether it will be dark or light.”

The challenge now will be to understand why the maximum speed seems to be at least 1,000 times lower than expected. The explanation, Siegmann said, could lie in the way thermal motion interacts with the magnetization process.

The limit on recording speed must be somewhere between 100 billion and a trillion bits per second, but is unlikely to ever affect technology, says Seagate’s Weller. State-of-the-art drives can now record about 1 billion bits per second, and long before that speed can be increased 100-fold, other physical constraints will get in the way, he says. In particular, higher speed requires smaller magnetic grains, but their size cannot go below the size of atoms.

The SSRL result could be an important step toward understanding the basic physics of data recording, leading to the development of entirely new technologies. A promising idea, Weller says, is heat-assisted recording, where a small section of the recording medium is temporarily brought to a high temperature, to speed up its magnetization reversal.

With the help of SLAC’s new Linac Coherent Light Source (LCLS), scheduled to start operating in 2008, researchers will be able to gain a solid understanding of the magnetic properties of matter. The LCLS will use the linac’s electron beam to produce laser-like X-ray pulses lasting just one femtosecond, enabling researchers to take snapshots of the magnetization process. “We will take images observing not only what has happened,” said Stöhr. “We will be able to see those processes while they happen.”

The DOE Office of Sciences both supported the research and funds the operation of the national user facilities at SLAC.

Neil Calder | SLAC
Further information:
http://www.slac.stanford.edu/slac/media-info/20040423/index.html
http://www-ssrl.slac.stanford.edu/
http://www.slac.stanford.edu/

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>