Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cosmic Magnifying Glass

19.04.2004


Distant star reveals planet

Like Sherlock Holmes holding a magnifying glass to unveil hidden clues, modern day astronomers used cosmic magnifying effects to reveal a planet orbiting a distant star.

This marks the first discovery of a planet around a star beyond Earth’s solar system using gravitational microlensing. A star or planet can act as a cosmic lens to magnify and brighten a more distant star lined up behind it. The gravitational field of the foreground star bends and focuses light, like a glass lens bending and focusing starlight in a telescope. Albert Einstein predicted this effect in his theory of general relativity and confirmed it with our sun.

"The real strength of microlensing is its ability to detect low- mass planets," said Dr. Ian Bond of the Institute for Astronomy in Edinburgh, Scotland, lead author of a paper appearing in the May 10 Astrophysical Journal Letters. The discovery was made possible through cooperation between two international research teams: Microlensing Observations in Astrophysics (MOA) and Optical Gravitational Lensing Experiment (OGLE). Well-equipped amateur astronomers might use this technique to follow up future discoveries and help confirm planets around other stars.

The newly discovered star-planet system is 17,000 light years away, in the constellation Sagittarius. The planet, orbiting a red dwarf parent star, is most likely one-and-ahalf times bigger than Jupiter. The planet and star are three times farther apart than Earth and the sun. Together, they magnify a farther, background star some 24,000 light years away, near the Milky Way center.

In most prior microlensing observations, scientists saw a typical brightening pattern, or light curve, indicating a star’s gravitational pull was affecting light from an object behind it. The latest observations revealed extra spikes of brightness, indicating the existence of two massive objects. By analyzing the precise shape of the light curve, Bond and his team determined one smaller object is only 0.4 percent the mass of a second, larger object. They concluded the smaller object must be a planet orbiting its parent star.

Dr. Bohdan Paczynski of Princeton University, Princeton, N.J., an OGLE team member, first proposed using gravitational microlensing to detect dark matter in 1986. In 1991, Paczynski and his student, Shude Mao, proposed using microlensing to detect extrasolar planets. Two years later, three groups reported the first detection of gravitational microlensing by stars. Earlier claims of planet discoveries with microlensing are not regarded as definitive, since they had too few observations of the apparent planetary brightness variations.

"I’m thrilled to see the prediction come true with this first definite planet detection through gravitational microlensing," Paczynski said. He and his colleagues believe observations over the next few years may lead to the discovery of Neptune-sized, and even Earth-sized planets around distant stars.

Microlensing can easily detect extrasolar planets, because a planet dramatically affects the brightness of a background star. Because the effect works only in rare instances, when two stars are perfectly aligned, millions of stars must be monitored. Recent advances in cameras and image analysis have made this task manageable. Such developments include the new large field-of-view OGLE-III camera, the MOA-II 1.8 meter (70.8 inch) telescope, being built, and cooperation between microlensing teams.

"It’s time-critical to catch stars while they are aligned, so we must share our data as quickly as possible," said OGLE team- leader Dr. Andrzej Udalski of Poland’s Warsaw University Observatory. Udalski in Poland and Paczynski in the U.S lead the Polish/American project. It operates at Las Campanas Observatory in Chile, run by the Carnegie Institution of Washington, and includes the world’s largest microlensing survey on the 1.3 meter (51-inch) Warsaw Telescope.

NASA and the National Science Foundation (NSF) fund OGLE in the U.S. The Polish State Committee for Scientific Research and Foundation for Polish Science funds it in Poland. MOA is primarily a New Zealand/Japanese group, with collaborators in the United Kingdom and U.S. New Zealand’s Marsden Fund, NASA and National Science Foundation, Japan’s Ministry of Education, Culture, Sports, Science, and Technology, and the Japan Society support it for the Promotion of Science.

M. Mitchell Waldrop | NSF
Further information:
http://www.jpl.nasa.gov/media/041504
http://bulge.princeton.edu/~ogle/
http://www.physics.auckland.ac.nz/moa/

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>