Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spiders make best ever Post-it notes

19.04.2004


Scientists have found that the way spiders stick to ceilings could be the key to making Post-it® notes that don’t fall off – even when they are wet. A team from Germany and Switzerland have made the first detailed examinations of a jumping spider’s ‘foot’ and have discovered that a molecular force sticks the spider to almost anything. The force is so strong that these spiders could carry over 170 times their own body weight while standing on the ceiling. The research is published today (Monday 19 April 2004) in the Institute of Physics journal Smart Materials and Structures.


A scanning electron microscope (SEM) micrograph of the foot of the jumping spider E. arcuata. In addition to the tarsal claws, a tuft of hair called a scopula is found at the tip of the foot, which is what the spider uses to attach itself to surfaces. The long hairs which are distributed over the entire foot are sensitive to touch



This is the first time anyone has measured exactly how spiders stick to surfaces, and how strong the adhesion force is. The team used a scanning electron microscope (SEM) to make images of the foot of a jumping spider, Evarcha arcuata (pictures available – see notes). There is a tuft of hairs on the bottom of the spider’s leg, and each individual hair is covered in more hairs. These smaller hairs are called setules, and they are what makes the spider stick.

The paper reveals that the force these spiders use to stick to surfaces is the van der Waals force, which acts between individual molecules that are within a nanometre of each other (a nanometre is about ten thousand times smaller than the width of a human hair). The team used a technique called Atomic Force Microscopy (AFM) to measure this force. The flexible contact tips of the setules are triangular (pictures available – see notes), and they have an amazingly high adhesive force on the underlying surface.


Andrew Martin, from the Institute of Technical Zoology and Bionics in Germany, said, “We found out that when all 600,000 tips are in contact with an underlying surface the spider can produce an adhesive force of 170 times its own weight. That’s like Spiderman clinging to the flat surface of a window on a building by his fingertips and toes only, whilst rescuing 170 adults who are hanging on to his back!”

What makes the van der Waals force an interesting form of adhesion is that, unlike many glues, the surrounding environment does not affect it. The only thing that affects it is the distance between the two objects.

“One possible application of our research would be to develop Post-it® notes based on the van der Waals force, which would stick even if they got wet or greasy,” said Professor Antonia Kesel, head of the research group in Bremen. “You could also imagine astronauts using spacesuits that help them stick to the walls of a spacecraft – just like a spider on the ceiling.”

The total van der Waals force on the spider’s feet is very strong, but it is the sum of many very small forces on each molecule. The researchers believe the spider lifts its leg so that the setules are lifted successively, not all at once, and it does not need to be very strong to do this. All you would have to do to lift a future kind of Post-it® note is peel it off slowly.

The van der Waals force exists because the movement of electrons in atoms and molecules causes them to become dipolar. A dipolar atom or molecule has a “positive-pole” and a “negative-pole”. The positive-pole of one atom or molecule will be attracted to the negative-pole of another. This particular electrostatic attraction is called the van der Waals force, and is in some ways similar to the magnetic attraction between north and south poles of magnets.

“We carried out this research to find out how these spiders have evolved to stick to surfaces, and found that it was all down to a microscopic force between molecules. We now hope that this basic research will lead the way to new and innovative technology,” said Professor Kesel.

Michelle Cain | alfa
Further information:
http://www.iop.org/ej/sms
http://stacks.iop.org/SMS/13/512

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>