Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spiders make best ever Post-it notes

19.04.2004


Scientists have found that the way spiders stick to ceilings could be the key to making Post-it® notes that don’t fall off – even when they are wet. A team from Germany and Switzerland have made the first detailed examinations of a jumping spider’s ‘foot’ and have discovered that a molecular force sticks the spider to almost anything. The force is so strong that these spiders could carry over 170 times their own body weight while standing on the ceiling. The research is published today (Monday 19 April 2004) in the Institute of Physics journal Smart Materials and Structures.


A scanning electron microscope (SEM) micrograph of the foot of the jumping spider E. arcuata. In addition to the tarsal claws, a tuft of hair called a scopula is found at the tip of the foot, which is what the spider uses to attach itself to surfaces. The long hairs which are distributed over the entire foot are sensitive to touch



This is the first time anyone has measured exactly how spiders stick to surfaces, and how strong the adhesion force is. The team used a scanning electron microscope (SEM) to make images of the foot of a jumping spider, Evarcha arcuata (pictures available – see notes). There is a tuft of hairs on the bottom of the spider’s leg, and each individual hair is covered in more hairs. These smaller hairs are called setules, and they are what makes the spider stick.

The paper reveals that the force these spiders use to stick to surfaces is the van der Waals force, which acts between individual molecules that are within a nanometre of each other (a nanometre is about ten thousand times smaller than the width of a human hair). The team used a technique called Atomic Force Microscopy (AFM) to measure this force. The flexible contact tips of the setules are triangular (pictures available – see notes), and they have an amazingly high adhesive force on the underlying surface.


Andrew Martin, from the Institute of Technical Zoology and Bionics in Germany, said, “We found out that when all 600,000 tips are in contact with an underlying surface the spider can produce an adhesive force of 170 times its own weight. That’s like Spiderman clinging to the flat surface of a window on a building by his fingertips and toes only, whilst rescuing 170 adults who are hanging on to his back!”

What makes the van der Waals force an interesting form of adhesion is that, unlike many glues, the surrounding environment does not affect it. The only thing that affects it is the distance between the two objects.

“One possible application of our research would be to develop Post-it® notes based on the van der Waals force, which would stick even if they got wet or greasy,” said Professor Antonia Kesel, head of the research group in Bremen. “You could also imagine astronauts using spacesuits that help them stick to the walls of a spacecraft – just like a spider on the ceiling.”

The total van der Waals force on the spider’s feet is very strong, but it is the sum of many very small forces on each molecule. The researchers believe the spider lifts its leg so that the setules are lifted successively, not all at once, and it does not need to be very strong to do this. All you would have to do to lift a future kind of Post-it® note is peel it off slowly.

The van der Waals force exists because the movement of electrons in atoms and molecules causes them to become dipolar. A dipolar atom or molecule has a “positive-pole” and a “negative-pole”. The positive-pole of one atom or molecule will be attracted to the negative-pole of another. This particular electrostatic attraction is called the van der Waals force, and is in some ways similar to the magnetic attraction between north and south poles of magnets.

“We carried out this research to find out how these spiders have evolved to stick to surfaces, and found that it was all down to a microscopic force between molecules. We now hope that this basic research will lead the way to new and innovative technology,” said Professor Kesel.

Michelle Cain | alfa
Further information:
http://www.iop.org/ej/sms
http://stacks.iop.org/SMS/13/512

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>