Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spiders make best ever Post-it notes

19.04.2004


Scientists have found that the way spiders stick to ceilings could be the key to making Post-it® notes that don’t fall off – even when they are wet. A team from Germany and Switzerland have made the first detailed examinations of a jumping spider’s ‘foot’ and have discovered that a molecular force sticks the spider to almost anything. The force is so strong that these spiders could carry over 170 times their own body weight while standing on the ceiling. The research is published today (Monday 19 April 2004) in the Institute of Physics journal Smart Materials and Structures.


A scanning electron microscope (SEM) micrograph of the foot of the jumping spider E. arcuata. In addition to the tarsal claws, a tuft of hair called a scopula is found at the tip of the foot, which is what the spider uses to attach itself to surfaces. The long hairs which are distributed over the entire foot are sensitive to touch



This is the first time anyone has measured exactly how spiders stick to surfaces, and how strong the adhesion force is. The team used a scanning electron microscope (SEM) to make images of the foot of a jumping spider, Evarcha arcuata (pictures available – see notes). There is a tuft of hairs on the bottom of the spider’s leg, and each individual hair is covered in more hairs. These smaller hairs are called setules, and they are what makes the spider stick.

The paper reveals that the force these spiders use to stick to surfaces is the van der Waals force, which acts between individual molecules that are within a nanometre of each other (a nanometre is about ten thousand times smaller than the width of a human hair). The team used a technique called Atomic Force Microscopy (AFM) to measure this force. The flexible contact tips of the setules are triangular (pictures available – see notes), and they have an amazingly high adhesive force on the underlying surface.


Andrew Martin, from the Institute of Technical Zoology and Bionics in Germany, said, “We found out that when all 600,000 tips are in contact with an underlying surface the spider can produce an adhesive force of 170 times its own weight. That’s like Spiderman clinging to the flat surface of a window on a building by his fingertips and toes only, whilst rescuing 170 adults who are hanging on to his back!”

What makes the van der Waals force an interesting form of adhesion is that, unlike many glues, the surrounding environment does not affect it. The only thing that affects it is the distance between the two objects.

“One possible application of our research would be to develop Post-it® notes based on the van der Waals force, which would stick even if they got wet or greasy,” said Professor Antonia Kesel, head of the research group in Bremen. “You could also imagine astronauts using spacesuits that help them stick to the walls of a spacecraft – just like a spider on the ceiling.”

The total van der Waals force on the spider’s feet is very strong, but it is the sum of many very small forces on each molecule. The researchers believe the spider lifts its leg so that the setules are lifted successively, not all at once, and it does not need to be very strong to do this. All you would have to do to lift a future kind of Post-it® note is peel it off slowly.

The van der Waals force exists because the movement of electrons in atoms and molecules causes them to become dipolar. A dipolar atom or molecule has a “positive-pole” and a “negative-pole”. The positive-pole of one atom or molecule will be attracted to the negative-pole of another. This particular electrostatic attraction is called the van der Waals force, and is in some ways similar to the magnetic attraction between north and south poles of magnets.

“We carried out this research to find out how these spiders have evolved to stick to surfaces, and found that it was all down to a microscopic force between molecules. We now hope that this basic research will lead the way to new and innovative technology,” said Professor Kesel.

Michelle Cain | alfa
Further information:
http://www.iop.org/ej/sms
http://stacks.iop.org/SMS/13/512

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>