Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A "Dragon" on the Surface of Titan


Titan surface map at wavelength 1.575 micron (ESO VLT + NACO/SDI)

Four SDI-NACO Images

VLT looks through narrow atmospheric window and produces most detailed images yet New images of unsurpassed clarity have been obtained with the ESO Very Large Telescope (VLT) of formations on the surface of Titan, the largest moon in the Saturnian system. They were made by an international research team [1] during recent commissioning observations with the "Simultaneous Differential Imager (SDI)", a novel optical device, just installed at the NACO Adaptive Optics instrument [2].

With the high-contrast SDI camera, it is possible to obtain extremely sharp images in three colours simultaneously. Although mainly conceived for exoplanet imaging, this device is also very useful for observations of objects with thick atmospheres in the solar system like Titan. Peering at the same time through a narrow, unobscured near-infrared spectral window in the dense methane atmosphere and an adjacent non-transparent waveband, images were obtained that are virtually uncontaminated by atmospheric components. They map the reflectivity of a large number of surface features in unprecedented detail.

The images show a number of surface regions with very different reflectivity. Of particular interest are several large "dark" areas of uniformly low reflectivity. One possible interpretation is that they represent huge surface reservoirs of liquid hydrocarbonates.

Whatever the case, these new observations will be most useful for the planning of the delivery of the Huygens probe - now approaching the Saturn system on the NASA/ESA Cassini spacecraft and scheduled for descent to Titan’s surface in early 2005.

Views of Titan - the quest for the surface

Titan, the largest Saturnian moon and the second largest moon of the solar system (only Jupiter’s Ganymede is slightly larger), is the only satellite known with a substantial atmosphere. It is composed mainly of nitrogen (like that of the Earth) and also contains significant amounts of methane. Opaque orange hazes and clouds of complex organic molecules effectively shield the solid surface from view, cf. e.g. the Voyager images.

Recent spectroscopic and radar observations suggest that there are huge surface reservoirs of liquid hydrocarbonates and a methane-based meteorological cycle similar to Earth’s hydrological cycle. This makes Titan the only known object with rainfall and potential surface oceans other than the Earth and thus a tantalizing research object for the
study of pre-biotic chemistry and the origin of life on Earth.

The Huygens probe from the NASA/ESA Cassini-Huygens mission will enter Titan’s atmosphere in early 2005 to make measurements of the physical and chemical conditions, hopefully surviving the descent to document the surface as well.

Coordinated ground-based observations will provide essential support for the scientific return of the Cassini-Huygens encounter. However, only 8-10 m class telescopes with adaptive optics imaging systems or space-borne instruments can achieve sufficient image sharpness to attain a useful level of detail.

The new map of a large part of Titan’s surface, shown in PR Photo 11a/04, represents an important contribution in this direction.

A question of atmospheric windows

The first intriguing views of Titan’s surface were obtained by the Hubble Space Telescope (HST) in the 1990’s. From the ground, images were obtained in 2001-2 with the Keck II and Gemini North telescopes and more recently with the ESO Very Large Telescope (VLT), cf. ESO PR Photos 08a-c/04. All of these observations were made through a single narrow-band filter at a time.

The wavelengths used for such observations are critical for the amount of surface detail captured on the images. Optimally, one would look for a spectral band in which the atmosphere is completely transparent; a number of such "windows" are known to exist. But although the above observations were made in wavebands roughly matching atmospheric windows and do show surface features, they also include the light from different atmospheric layers. In a sense, they therefore correspond to viewing Titan’s surface through a somewhat opaque screen or, more poetically, the sight by an ancient sailor, catching for the first time a glimpse of an unknown continent through the coastal haze.

One narrow "window" is available in the near-infrared spectral region near wavelength 1.575 micron. In February 2004, an international research team [1] working at the ESO VLT at the Paranal Observatory (Chile) obtained images of Titan’s surface through this spectral window with unprecedented spatial resolution and with the lowest contamination of atmospheric condensates to date.

They accomplished this during six nights (February 2, 3, 5, 6, 7 and 8, 2004) at the time of the commissioning phase of a novel high-contrast imaging mode for the NACO adaptive optics instrument on the 8.2-m VLT YEPUN telescope, using the Simultaneous Differential Imager (SDI) [2]. This novel optical device provides four simultaneous high-resolution images (PR Photo 11b/04) at three wavelengths around a near-infrared atmospheric methane absorption feature.

The main application of the SDI is high-contrast imaging for the search for substellar companions with methane in their atmosphere, e.g. brown dwarfs and giant exoplanets, near other stars. However, as the present photos demonstrate, it is also superbly suited for Titan imaging.

Mapping Titan’s surface in unprecedented detail

Titan is tidally-locked to Saturn, and hence always presents the same face towards the planet. To image all sides of Titan (from the Earth) therefore requires observations during almost one entire orbital period, 16 days. Still, the present week-long observing campaign
enabled the team to map approximately three-quarters of the surface of Titan.

A new map of the surface of Titan (in cylindrical projection and covering most, but not all of the area imaged during these observations) is shown in PR Photo 11a/04. For this, the simultaneous "atmospheric" images (at waveband 1.625 micron) were "subtracted" from the "surface" images (1.575 and 1.600 micron) in order to remove any residual atmospheric features present in the latter. The ability to subtract simultaneous images is unique to the SDI camera [2].

This truly unique map shows the fraction of sunlight reflected from the surface - bright areas reflect more light than the darker ones. The amount of reflection (in astronomical terms: the "albedo") depends on the composition and structure of the surface layer and it
is not possible with this single-wavelength ("monochromatic") map alone to elucidate the true nature of those features.

Nevertheless, recent radar observations with the Arecibo antenna have provided evidence for liquid surfaces on Titan, and the low-reflection areas (dark on PR Photos 11a/04 and 11f/04) could indicate the locations of those suspected reservoirs of liquid hydrocarbonates. They also provide a possible source for the replenishment of methane that is continuously lost in the atmosphere because of decomposition by the sunlight.

Presumably, the bright, highly reflective regions are ice-covered highlands.

Provisional names of the new features

A comparison (PR Photo 11e/04) with an earlier NACO image (available as PR Photo 08c/04) obtained through another filter is useful. It demonstrates the importance of employing a filter that precisely fits the atmospheric window and hence the gain of clarity with the present observations. It also provides independent confirmation of the reality
of the gross features, since the observations are separated by 15 months in time.

Over the range of longitudes which have been mapped during the present observations (PR Photo 11a/04), it is obvious that the southern hemisphere of Titan is dominated by a single bright region centered at approximately 15 deg longitude. (Note that this is not the so-called "bright feature" seen in the HST images at longitude 80 - 130 deg, an area that was not covered during the present observations).

The equatorial area displays the above mentioned, well-defined dark (low-reflection) structures, cf. PR Photo 11g/04. In order to facilitate their identification, the team decided to give these dark features provisional names - official names will be assigned at a later moment by the Working Group on Planetary System Nomenclature of the International Astronomical Union (IAU WGPSN). From left to right, the SDI team [1] has referred to these features informally as: the "lying H", the "dog" chasing a "ball", and the "dragon’s head".

More observations to come

The team expects to continue imaging and monitoring of Titan in the coming months, with the goal of assisting the Cassini-Huygens team in the interpretation and understanding of what will certainly be a rich and complex flow of information about this enigmatic moon.


Markus Hartung
ESO Santiago, Chile
Tel: +56 2 463 3071

Laird Close
University of Arizona, USA
Tel: +1 520 626 5992

Rainer Lenzen
Max-Planck Institut fuer Astronomie
Heidelberg Germany
Tel: +49 6221 528 228

Richard West | alfa
Further information:

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>



Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

More VideoLinks >>>