Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connecting the quantum and classical physics

02.04.2004


In this week’s issue of Science, a Dartmouth researcher comments about a new experiment that brings us closer to connecting the macroscopic and the microscopic worlds.



Miles Blencowe, a quantum theorist with the Physics and Astronomy Department at Dartmouth, wrote the article "Nanomechanical Quantum Limits" for the "Perspectives" section of the April 2 issue of Science. In it, he explains the problem of reconciling the inherent contradiction between the quantum or atomic world and the macroscopic word of trees, buildings and cars that we live in.

"The world we live in follows the principles of classical physics," says Blencowe. "We see objects in one place. In the microscopic world, the quantum world, things can be in two places at once. The Heisenberg Uncertainty Principle asserts that the more you try to localize an object the more you disturb it and it zooms away and then you don’t know where it is anymore. Somehow the atomic world becomes ours as we go to larger and larger systems. Scientists want to know how that crossover from quantum to classical occurs."


As a theorist, Blencowe and his colleagues propose experiments and hypothesize about the results. His commentary in Science discusses the findings of M.D. LaHaye and his collaborators, researchers with the Laboratory for Physical Sciences in Maryland. LaHaye’s group based their experiment on Blencowe’s theories.

"About three years ago, my colleagues and I proposed that we could see this quantum motion in the macroscopic realm with an extremely sensitive motion detector, called a single electron transistor. We came up with this idea to look at quantum effects in mechanical systems that are really tiny, but still much larger than a single atom."

The Maryland researchers cooled a tiny mechanical beam to close to absolute zero, and they measured its movement using a single electron transistor. As the beam is cooled, it slows down and the classical physics that normally dictate its movements are frozen out, leaving the quantum zero-point fluctuations, which is as close to still as you can get. Getting the beam to reveal its zero-point fluctuations, where quantum classical physics cross over to quantum physics, is the goal of the experiment, and LaHaye’s group comes close.

"It’s very exciting. They have achieved great sensitivity; they’ve come to within a factor of 10 of this zero point measurement," says Blencowe.

Blencowe is hopeful that the next generation of experiments will "reach the quantum limit for motion of mechanical systems well outside the microscopic domain," according to his article.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Physics and Astronomy:

nachricht Scientific achievements during the operation of Lomonosov satellite
18.12.2017 | Lomonosov Moscow State University

nachricht Quantum memory with record-breaking capacity based on laser-cooled atoms
18.12.2017 | Faculty of Physics University of Warsaw

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>