Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Connecting the quantum and classical physics

02.04.2004


In this week’s issue of Science, a Dartmouth researcher comments about a new experiment that brings us closer to connecting the macroscopic and the microscopic worlds.



Miles Blencowe, a quantum theorist with the Physics and Astronomy Department at Dartmouth, wrote the article "Nanomechanical Quantum Limits" for the "Perspectives" section of the April 2 issue of Science. In it, he explains the problem of reconciling the inherent contradiction between the quantum or atomic world and the macroscopic word of trees, buildings and cars that we live in.

"The world we live in follows the principles of classical physics," says Blencowe. "We see objects in one place. In the microscopic world, the quantum world, things can be in two places at once. The Heisenberg Uncertainty Principle asserts that the more you try to localize an object the more you disturb it and it zooms away and then you don’t know where it is anymore. Somehow the atomic world becomes ours as we go to larger and larger systems. Scientists want to know how that crossover from quantum to classical occurs."


As a theorist, Blencowe and his colleagues propose experiments and hypothesize about the results. His commentary in Science discusses the findings of M.D. LaHaye and his collaborators, researchers with the Laboratory for Physical Sciences in Maryland. LaHaye’s group based their experiment on Blencowe’s theories.

"About three years ago, my colleagues and I proposed that we could see this quantum motion in the macroscopic realm with an extremely sensitive motion detector, called a single electron transistor. We came up with this idea to look at quantum effects in mechanical systems that are really tiny, but still much larger than a single atom."

The Maryland researchers cooled a tiny mechanical beam to close to absolute zero, and they measured its movement using a single electron transistor. As the beam is cooled, it slows down and the classical physics that normally dictate its movements are frozen out, leaving the quantum zero-point fluctuations, which is as close to still as you can get. Getting the beam to reveal its zero-point fluctuations, where quantum classical physics cross over to quantum physics, is the goal of the experiment, and LaHaye’s group comes close.

"It’s very exciting. They have achieved great sensitivity; they’ve come to within a factor of 10 of this zero point measurement," says Blencowe.

Blencowe is hopeful that the next generation of experiments will "reach the quantum limit for motion of mechanical systems well outside the microscopic domain," according to his article.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>