Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Radio astronomers lift ’fog’ on Milky Way’s dark heart

02.04.2004


Black hole fits inside Earth’s orbit



Thirty years after astronomers discovered the mysterious object at the exact center of our Milky Way Galaxy, an international team of scientists has finally succeeded in directly measuring the size of that object, which surrounds a black hole nearly four million times more massive than the Sun. This is the closest telescopic approach to a black hole so far and puts a major frontier of astrophysics within reach of future observations. The scientists used the National Science Foundation’s Very Long Baseline Array (VLBA) radio telescope to make the breakthrough.

"This is a big step forward," said Geoffrey Bower, of the University of California-Berkeley. "This is something that people have wanted to do for 30 years," since the Galactic center object, called Sagittarius A* (pronounced "A-star"), was discovered in 1974. The astronomers reported their research in the April 1 edition of Science Express.


"Now we have a size for the object, but the mystery about its exact nature still remains," Bower added. The next step, he explained, is to learn its shape, "so we can tell if it is jets, a thin disk, or a spherical cloud."

The Milky Way’s center, 26,000 light-years from Earth, is obscured by dust, so visible-light telescopes cannot study the object. While radio waves from the Galaxy’s central region can penetrate the dust, they are scattered by turbulent charged plasma in the space along the line of sight to Earth. This scattering had frustrated earlier attempts to measure the size of the central object, just as fog blurs the glare of distant lighthouses.

"After 30 years, radio telescopes finally have lifted the fog and we can see what is going on," said Heino Falcke, of the Westerbork Radio Observatory in the Netherlands, another member of the research team.

The bright, radio-emitting object would fit neatly just inside the path of the Earth’s orbit around the Sun, the astronomers said. The black hole itself, they calculate, is about 14 million miles across, and would fit easily inside the orbit of Mercury. Black holes are concentrations of matter so dense that not even light can escape their powerful gravity.

The new VLBA observations provided astronomers their best look yet at a black hole system. "We are much closer to seeing the effects of a black hole on its environment here than anywhere else," Bower said.

The Milky Way’s central black hole, like its more-massive cousins in more-active galactic nuclei, is believed to be drawing in material from its surroundings, and in the process powering the emission of the radio waves. While the new VLBA observations have not provided a final answer on the nature of this process, they have helped rule out some theories, Bower said. Based on the latest work, he explained, the top remaining theories for the nature of the radio- emitting object are jets of subatomic particles, similar to those seen in radio galaxies; and some theories involving matter being accelerated near the edge of the black hole.

As the astronomers studied Sagittarius A* at higher and higher radio frequencies, the apparent size of the object became smaller. This fact, too, Bower said, helped rule out some ideas of the object’s nature. The decrease in observed size with increasing frequency, or shorter wavelength, also gives the astronomers a tantalizing target.

"We think we can eventually observe at short enough wavelengths that we will see a cutoff when we reach the size of the black hole itself," Bower said. In addition, he said, "in future observations, we hope to see a ’shadow’ cast by a gravitational lensing effect of the very strong gravity of the black hole."

In 2000, Falcke and his colleagues proposed such an observation on theoretical grounds, and it now seems feasible. "Imaging the shadow of the black hole’s event horizon is now within our reach, if we work hard enough in the coming years," Falcke added.

Another conclusion the scientists reached is that "the total mass of the black hole is very concentrated," according to Bower. By making the "most precise localization of the mass of a supermassive black hole ever," the astronomers said that a mass of at least 40,000 Suns has to reside in a space corresponding to the size of the Earth’s orbit. Most likely, however, all the black hole’s mass -- equal to four million Suns -- is concentrated well inside the area engulfed by the radio-emitting object.

To make their measurement, the astronomers had to go to painstaking lengths to circumvent the scattering effect of the plasma "fog" between Sagittarius A* and Earth. "We had to push our technique really hard," Bower said.

Bower likened the task to "trying to see your yellow rubber duckie through the frosted glass of the shower stall." By making many observations, only keeping the highest-quality data, and mathematically removing the scattering effect of the plasma, the scientists succeeded in making the first-ever measurement of Sagittarius A*’s size.

In addition to Bower and Falcke, the research team includes Robin Herrnstein of Columbia University, Jun-Hui Zhao of the Harvard-Smithsonian Center for Astrophysics, Miller Goss of the National Radio Astronomy Observatory, and Donald Backer of the University of California-Berkeley. Falcke also is an adjunct professor at the University of Nijmegen and a visiting scientist at the Max-Planck Institute for Radioastronomy in Bonn, Germany.

Sagittarius A* was discovered in February of 1974 by Bruce Balick, now at the University of Washington, and Robert Brown, now director of the National Astronomy and Ionospheric Center at Cornell University. It has been shown conclusively to be the center of the Milky Way, around which the rest of the Galaxy rotates. In 1999, Mark Reid of the Harvard-Smithsonian Center for Astrophysics and his colleagues used VLBA observations of Sagittarius A* to detect the Earth’s motion in orbit around the Galaxy’s center and determined that our Solar System takes 226 million years to make one circuit around the Galaxy.

In March 2004, 55 astronomers gathered at the National Radio Astronomy Observatory facility in Green Bank, West Virginia, for a scientific conference celebrating the discovery of Sagittarius A* at Green Bank 30 years ago. At this conference, the scientists unveiled a commemorative plaque on one of the discovery telescopes.

The Very Long Baseline Array, part of the National Radio Astronomy Observatory, is a continent-wide radio-telescope system, with 10, 240-ton dish antennas ranging from Hawaii to the Caribbean. It provides the greatest resolving power, or ability to see fine detail, of any telescope in astronomy, on Earth or in space.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.berkeley.edu/

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>