Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Mathematicians Predict Patterns in Fingerprints, Cacti

02.04.2004


Img 1 (above): Human fingerprint patterns are created because basal skin grows faster than surface skin, which then buckles, forming ridges .
Img 2 (below): Kuecken developed a mathematical model that can reproduce fingerprint patterns, like this one.


Shipman found that cactus stickers predicatably align in spiral patterns


Patterns in nature can be seen every day, yet in many cases, little is understood about how and why they form. Now University of Arizona mathematicians have found a way to predict natural patterns, including fingerprints and the spirals seen in cacti.

UA graduate student Michael Kuecken developed a mathematical model that can reproduce fingerprint patterns, while UA graduate student Patrick Shipman created a mathematical model to explain the arrangement of repeated units in various plants. Shipman’s report on his work will be published in an upcoming issue of Physical Review Letters.

Even though the use of fingerprints for identification began more than 2000 years ago in China and they have been studied experimentally for over two hundred years, there is no widely accepted explanation for their occurrence. Likewise, the reasons behind nature’s choice of patterns in plants have been difficult for mathematicians to explain, despite these patterns having been identified centuries ago.



“What I like about this research is the interplay between math and biology. It is actually quite difficult, because the disciplines require a somewhat different mindset and biology is notoriously bewildering and full of detail,” Kuecken said. “In a way, dealing with this problem was like putting together a jigsaw puzzle of facts. I had to try out different things and could use math, and sometimes common sense, to see if the pieces actually fit.”

Human skin has multiple layers, including the outermost epidermis and the inner dermis. The outer and inner layers are separated by the basal layer, which is composed of cells that constantly divide. Growth occurs in a similar fashion in plants, which have areas of continuous cell growth, such as the tip of a cactus, that allow the plant to grow larger.

The basal layer in human skin and the equivalent layer in plant skin grow at a faster rate than either the surface layers or the thick dermis layer. As the basal layer continues to grow, pressure increases. In both plants and fingertips, the growing layer buckles inward toward the softer inner layer of tissue, relieving the stress. As a result, ridges are formed on the surface.

The undulations from the buckling form fingerprints and various patterns in plants, from the ridges in saguaro cacti to the hexagons in pineapples. The way a pattern is formed, regardless whether it is a fingerprint or a plant, is related to the forces imposed during ridge formation.

The basic properties responsible for the mechanism of buckling in plants and fingerprints happen in other materials as well. Kuecken and Shipman’s graduate advisor, UA professor of mathematics Alan Newell, said, “In material science, high-temperature superconductors seem to be connected with stresses that compress to build the structures in various high-temperature materials. Indeed, the idea that buckling and surface stresses would have something to do with the patterns you see in plants is fairly recent.”

In fingerprints, ridge formation is influenced by discrete elevations of the skin on the fingertips, called volar pads, which first appear in human embryos at about six and a half weeks. The volar pads’ location is where the epidermal ridges for fingerprints will arise later in development.

Kuecken explained that as the volar pads shrink, it places stress on the skin layers. The ridges then form perpendicular to this stress. There are three basic patterns of fingerprints known as arches, loops and whorls that form in response to the different directions of stress caused by shrinking of the volar pads. Other research on ridge formation has already shown that if a person has a high, rounded volar pad, they will end up with a whorl pattern. Kuecken’s mathematical model was able to reproduce these large patterns, as well as the little intricacies that make an individual fingerprint unique.

Shipman’s model, like Kuecken’s, also took into account stresses that influenced ridge formation. In plants, forces acting in multiple directions result in complex patterns. For example, when buckling occurs in three different directions, all three ridges will appear together and form a hexagonal pattern.

“I’ve looked at cacti all my life, I really like them, and I’d really like to understand them,” Shipman said. To study these patterns, Shipman looked at the stickers on a cactus or florets on a flower.

When a line is drawn from sticker to sticker on a cactus in a clockwise or in a counterclockwise direction, the line ends up spiraling around the plant. This occurs in many plants, including pineapples and cauliflower. When these spirals are counted, it results in numbers that belong to the Fibonacci sequence, a series of numbers that appears frequently when scientists and mathematicians analyze natural patterns.
Shipman found that cactus stickers predicatably align in spiral patterns.

From his model, Shipman found that the initial curvature of a plant near its growth tip influences whether it will form ridges or hexagons. He found that plants with a flat top, or less curved top, such as saguaro cacti, will always form ridges and tend not to have Fibonacci sequences. Plants that have a high degree of curvature will produce hexagonal configurations, such as those in pinecones, and the number of spirals will always be numbers in the Fibonacci sequence.

Newell says that Shipman’s mathematical model demonstrates that the shapes chosen by nature are those that take the least energy to make. “Of all possible shapes you can have, what nature picked minimizes the energy in the plant.”

Alan C. Newell | University of Arizona
Further information:
http://uanews.org/cgi-bin/WebObjects/UANews.woa/wa/SRStoryDetails?ArticleID=8920

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>