Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Quasar Studies Keep Fundamental Physical Constant Constant

31.03.2004


Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time



A fine constant

To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light.


One of these constants is the so-called “fine structure constant”, alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold atoms together and the way light interacts with atoms.

But are these fundamental physical constants really constant? Are those numbers always the same, everywhere in the Universe and at all times? This is not as naive a question as it may seem. Contemporary theories of fundamental interactions, such as the Grand Unification Theory or super-string theories that treat gravity and quantum mechanics in a consistent way, not only predict a dependence of fundamental physical constants with energy - particle physics experiments have shown the fine structure constant to grow to a value of about 1/128 at high collision energies - but allow for their cosmological time and space variations. A time dependence of the fundamental constants could also easily arise if, besides the three space dimensions, there exist more hidden dimensions.

Already in 1955, the Russian physicist Lev Landau considered the possibility of a time dependence of alpha. In the late 1960s, George Gamow in the United States suggested that the charge of the electron, and therefore also alpha, may vary. It is clear however that such changes, if any, cannot be large or they would already have been detected in comparatively simple experiments. Tracking these possible changes thus requires the most sophisticated and precise techniques.

Looking back in time

In fact, quite strong constraints are already known to exist for the possible variation of the fine structure constant alpha. One such constraint is of geological nature. It is based on measures taken in the ancient natural fission reactor located near Oklo (Gabon, West Africa) and which was active roughly 2,000 million years ago. By studying the distribution of a given set of elements - isotopes of the rare earths, for example of samarium - which were produced by the fission of uranium, one can estimate whether the physical process happened at a faster or slower pace than we would expect it nowadays. Thus we can measure a possible change of the value of the fundamental constant at play here, alpha. However, the observed distribution of the elements is consistent with calculations assuming that the value of alpha at that time was precisely the same as the value today. Over the 2 billion years, the change of alpha has therefore to be smaller than about 2 parts per 100 millions. If present at all, this is a rather small change indeed. But what about changes much earlier in the history of the Universe?

To measure this we must find means to probe still further into the past. And this is where astronomy can help. Because, even though astronomers can’t generally do experiments, the Universe itself is a huge atomic physics laboratory. By studying very remote objects, astronomers can look back over a long time span. In this way it becomes possible to test the values of the physical constants when the Universe had only 25% of is present age, that is, about 10,000 million years ago.

Very far beacons

To do so, astronomers rely on spectroscopy - the measurement of the properties of light emitted or absorbed by matter. When the light from a flame is observed through a prism, a rainbow is visible. When sprinkling salt on the flame, distinct yellow lines are superimposed on the usual colours of the rainbow, so-called emission lines. Putting a gas cell between the flame and the prism, one sees however dark lines onto the rainbow: these are absorption lines. The wavelength of these emission and absorption lines is directly related to the energy levels of the atoms in the salt or in the gas. Spectroscopy thus allows us to study atomic structure.

The fine structure of atoms can be observed spectroscopically as the splitting of certain energy levels in those atoms. So if alpha were to change over time, the emission and absorption spectra of these atoms would change as well. One way to look for any changes in the value of alpha over the history of the Universe is therefore to measure the spectra of distant quasars, and compare the wavelengths of certain spectral lines with present-day values.

Quasars are here only used as a beacon - the flame - in the very distant Universe. Interstellar clouds of gas in galaxies, located between the quasars and us on the same line of sight and at distances varying from six to eleven thousand of million light years, absorb parts of the light emitted by the quasars. The resulting spectrum consequently presents dark “valleys” that can be attributed to well-known elements.

If the fine-structure constant happens to change over the duration of the light’s journey, the energy levels in the atoms would be affected and the wavelengths of the absorption lines would be shifted by different amounts. By comparing the relative gaps between the valleys with the laboratory values, it is possible to calculate alpha as a function of distance from us, that is, as a function of the age of the Universe.

These measures are however extremely delicate and require a very good modelling of the absorption lines. They also put exceedingly strong requirements on the quality of the astronomical spectra. They must have enough resolution to allow very precise measurement of minuscule shifts in the spectra. And a sufficient number of photons must be captured in order to provide a statistically unambiguous result.

For this, astronomers have to turn to the most advanced spectral instruments on the largest telescopes. This is where the Ultra-violet and Visible Echelle Spectrograph (UVES) and ESO’s Kueyen 8.2-m telescope at the Paranal Observatory is unbeatable, thanks to the unequalled spectral quality and large collecting mirror area of this combination.

Constant or not?

A team of astronomers, led by Patrick Petitjean (Institut d’Astrophysique de Paris and Observatoire de Paris, France) and Raghunathan Srianand (IUCAA Pune, India) very carefully studied a homogeneous sample of 50 absorption systems observed with UVES and Kueyen along 18 distant quasars lines of sight. They recorded the spectra of quasars over a total of 34 nights to achieve the highest possible spectral resolution and the best signal-to-noise ratio. Sophisticated automatic procedures specially designed for this programme were applied.

In addition, the astronomers used extensive simulations to show that they can correctly model the line profiles to recover a possible variation of alpha.

The result of this extensive study is that over the last 10,000 million years, the relative variation of alpha must be less than 0.6 part per million. This is the strongest constraint from quasar absorption lines studies to date. More importantly, this new result does not support previous claims of a statistically significant change of alpha with time.

Interestingly, this result is supported by another - less extensive - analysis, also conducted with the UVES spectrometer on the VLT [2]. Even though those observations were only concerned with one of the brightest known quasar HE 0515-4414, this independent study lends further support to the hypothesis of no variation of alpha.

Even though these new results represent a significant improvement in our knowledge of the possible (non-) variation of one of the fundamental physical constants, the present set of data would in principle still allow variations that are comparatively large compared to those resulting from the measurements from the Oklo natural reactor.

Nevertheless, further progress in this field is expected with the new very-high-accuracy radial velocity spectrometer HARPS on ESO’s 3.6-m telescope at the La Silla Observatory (Chile). This spectrograph works at the limit of modern technology and is mostly used to detect new planets around stars other than the Sun - it may provide an order of magnitude improvement on the determination of the variation of alpha.

Other fundamental constants can be probed using quasars. In particular, by studying the wavelengths of molecular hydrogen in the remote Universe, one can probe the variations of the ratio between the masses of the proton and the electron. The same team is now engaged in such a large survey with the Very Large Telescope that should lead to unprecedented constraints on this ratio.

Richard West | ESO
Further information:
http://www.eso.org/outreach/press-rel/pr-2004/pr-05-04.html

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>