Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mars Express confirms methane in the Martian atmosphere

31.03.2004


During recent observations from the ESA Mars Express spacecraft in orbit around Mars, methane was detected in its atmosphere.


The Mars Express spacecraft in orbit around Mars.
Credits: ESA 2001, Illustration by Medialab



Whilst it is too early to draw any conclusions on its origin, exciting as they may be, scientists are thinking about the next steps to take in order to understand more.
From the time of its arrival at Mars, the Mars Express spacecraft started producing stunning results. One of the aims of the mission is analysing in detail the chemical composition of the Martian atmosphere, known to consist of 95% percent carbon dioxide plus 5% of minor constituents. It is also from these minor constituents, which scientists expect to be oxygen, water, carbon monoxide, formaldehyde and methane, that we may get important information on the evolution of the planet and possible implications for the presence of past or present life.

The presence of methane has been confirmed thanks to the observations of the Planetary Fourier Spectrometer (PFS) on board Mars Express during the past few weeks. This instrument is able to detect the presence of particular molecules by analysing their “spectral fingerprints” - the specific way each molecule absorbs the sunlight it receives.



The measurements confirm so far that the amount of methane is very small – about 10 parts in a thousand million, so its production process is probably small. However, the exciting question “where does this methane come from?” remains.

Methane, unless it is continuously produced by a source, only survives in the Martian atmosphere for a few hundreds of years because it quickly oxidises to form water and carbon dioxide, both present in the Martian atmosphere. So, there must be a mechanism that refills the atmosphere with methane.

“The first thing to understand is how exactly the methane is distributed in the Martian atmosphere,” says Vittorio Formisano, Principal Investigator for the PFS instrument. “Since the methane presence is so small, we need to take more measurements. Only then we will have enough data to make a statistical analysis and understand whether there are regions of the atmosphere where methane is more concentrated”.

Once this is done, scientists will try to establish a link between the planet-wide distribution of methane and possible atmospheric or surface processes that may produce it. “Based on our experience on Earth, the methane production could be linked to volcanic or hydro-thermal activity on Mars. The High Resolution Stereo camera (HRSC) on Mars Express could help us identify visible activity, if it exists, on the surface of the planet”, continues Formisano. Clearly, if it was the case, this would imply a very important consequence, as present volcanic activity had never been detected so far on Mars.


Other hypotheses could also be considered. On Earth, methane is a by-product of biological activity, such as fermentation. “If we have to exclude the volcanic hypothesis, we could still consider the possibility of life,” concludes Formisano.

“In the next few weeks, the PFS and other instruments on-board Mars Express will continue gathering data on the Martian atmosphere, and by then we will be able to draw a more precise picture,” says Agustin Chicarro, ESA Mars Express Project Scientist.

Thanks to the PFS instrument, scientists are also gathering precious data about isotopes in atmospheric molecules such as water and carbon dioxide - very important to understand how the planet was formed and to add clues on the atmospheric escape. The PFS also gives important hints about water-cloud formation on the top of volcanoes, and shows the presence of active photochemical processes in the atmosphere.

Roberto Lo Verde | ESA
Further information:
http://www.esa.int/export/SPECIALS/Mars_Express/SEMZ0B57ESD_0.html

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>