30.03.2004

**Mathematicians test simplified formula to predict winning baseball percentages**

Is your local Major League Baseball team better than its record suggests? Math researchers are considering alternatives to the Pythagorean Theorem of Baseball, devised by baseball statistician Bill James. Introduced in the 1980s, the "theorem" predicts the winning percentage of a baseball team based on how many runs the team scores--and how many runs it allows.

Websites, including ESPN’s, often include the Pythagorean prediction of the winning percentage of a team during the season. Fans compare the Pythagorean Theorem to the actual winning percentage, in an effort to determine if a team is under- or over-achieving.

When a team scores fewer runs than it allows, the Pythagorean model predicts that the team should have a losing record. For the 2001 season, the New York Mets allowed more runs than they scored and had a winning record; they did much better than the Pythagorean model predicted. So they can be considered an overachieving team. Because the Colorado Rockies scored more runs than they allowed but had a losing record, they were possibly an underachieving team.

Now, Michael Jones and Linda Tappin of Montclair State University in New Jersey have devised mathematically simpler alternatives to the Pythagorean Theorem of Baseball.

To predict the winning percentage of a team, one new model simply uses a little addition, subtraction, and multiplication. It starts with the total runs scored by the team in all its games (Rs), and subtracts the runs it allows (Ra), and then multiplies it by a number called "beta" (B) which is chosen to produce the best results. For the 1969-2003 seasons, the optimal values of B range from 0.00053 to 0.00078, with an average of 0.00065.

Adding 0.5 to the result gives the predicted winning percentage of the team. The resulting formula looks like this:

The estimated winning percentage, P = 0.5 + B*(Rs-Ra)

Because they only use addition, multiplication, and subtraction, these formulas are known as "linear functions"-the simplest kind of equations in mathematics.

In contrast, the original Pythagorean Theorem of Baseball is more complex. It uses exponents: Runs scored and runs allowed are squared-raised to the second power. The resulting formula is: P=[Rs2/(Ra2+Rs2)]

The equation gets its name because of its similarity to the Pythagorean Theorem in geometry, which relates the lengths of the sides in a right triangle as a2 + b2=c2, where a and b are the shorter sides and c is the longest side (the hypotenuse).

Because the Pythagorean theorems use exponents, these formulas are "nonlinear" equations, which are generally more complex than linear formulas.

So was the original Pythagorean Equation of Baseball needlessly complicated? Does the linear equation do just as good a job?

For the baseball seasons between 1969-2003 the linear formula works almost as well in its predictions as the original Pythagorean theorem, Jones and Tappin reported at this winter’s Joint Mathematics Meetings in Phoenix. The one real exception is the 1981 season when there was a baseball strike.

While Tappin and Jones have only analyzed whole seasons with their new formula, they are exploring how well it works for seasons-in-progress. If their formula meets with continued success, you may soon find it on your favorite sports website.

Ben Stein | EurekAlert!

Further information:

http://www.aip.org/

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Academy of Finland

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Lobachevsky University

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Anzeige

Anzeige

Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks

Science & Research

Science & Research

NASA | A Year in the Life of Earth's CO2

NASA Computer Model Provides a New Portrait of Carbon Dioxide

Black Holes Come to the Big Screen

The new movie "Interstellar" explores a longstanding fascination, but UA astrophysicists are using cutting-edge technology to go one better.

NASA's Swift Mission Observes Mega Flares from a Mini Star

NASA's Swift satellite detected the strongest, hottest, and longest-lasting sequence of stellar flares ever seen from a nearby red dwarf star.

NASA | Global Hawks Soar into Storms

NASA's airborne Hurricane and Severe Storm Sentinel or HS3 mission, will revisit the Atlantic Ocean for the third year in a row.

Baffin Island - Disappearing ice caps

Giff Miller, geologist and paleoclima-tologist, is walking the margins of melting glaciers on Baffin Island, Nunavut, Canada.

The Infrasound Network and how it works

The CTBTO uses infrasound stations to monitor the Earth mainly for atmospheric explosions.