Protein folding on a chip


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory are proposing to use a supercomputer originally developed to simulate elementary particles in high-energy physics to help determine the structures and functions of proteins, including, for example, the 30,000 or so proteins encoded by the human genome. Structural information will help scientists better understand proteins’ role in disease and health, and may lead to new diagnostic and therapeutic agents.

Unlike typical parallel processors, the 10,000 processors in this supercomputer (called Quantum Chromodynamics on a Chip, or QCDOC, for its original application in physics) each contain their own memory and the equivalent of a 24-lane superhighway for communicating with one another in six dimensions. This configuration allows the supercomputer to break the task of deciphering the three-dimensional arrangement of a protein’s atoms — 100,000 in a typical protein — into smaller chunks of 10 atoms per processor. Working together, the chips effectively cut the computing time needed to solve a protein’s structure by a factor of 1000, says James Davenport, a physicist at Brookhaven. This would reduce the time for a simulation from approximately 20 years to 1 week.

“The computer analyzes the forces of attraction and repulsion between atoms, depending on their positions, distances, and angles. It shuffles through all the possible arrangements to arrive at the most stable three-dimensional configuration,” Davenport says.

The technique is complementary to other methods of protein-structure determination, such as x-ray crystallography — where the pattern of x-rays scattering off atoms in crystallized proteins is used to determine structure. It will be particularly useful for proteins that are impossible or difficult to crystallize, such as those that control the movement of molecules across the cellular membrane. The high-speed analysis will also allow scientists to study how proteins change as they interact or undergo other biochemical processes, which will give them more information about the proteins’ functions than available from structural studies alone.

Davenport and colleagues at Stony Brook University will test their application on a QCDOC machine that has been developed for physics applications at Brookhaven by Columbia University, IBM, and the RIKEN/BNL Research Center. To hear more about the potential for using such a machine for studies of proteins, see Davenport’s talk during the “Molecular Biology and Computation Session” on Friday, March 26, at 11:15 a.m. in room 510C. This work is funded by the Office of Advanced Scientific Computing Research within the Department of Energy’s Office of Science and Brookhaven Laboratory discretionary funding.

NOTE: This press release describes a talk being given by a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory at the March 2004 meeting of the American Physical Society, taking place March 22-26 at the Palais de Congres, Montreal, Canada (http://www.aps.org/meet/MAR04/).

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Media Contact

Karen McNulty Walsh EurekAlert!

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors