Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studying 3-D materials in one dimension

29.03.2004


Research by Young-June Kim, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory, may help determine how a class of materials already used in electronic circuits could be used in optical, or light-based, circuits, which could replace standard electrical circuits in telecommunications, computer networking, and other areas of technology.



Kim’s research is focused on "quasi one-dimensional" cuprates, materials that contain copper and oxygen where the atoms are tightly linked together in straight chains with weak lateral bonds -- like a ladder with steel rails and paper rungs. Because the materials’ properties are mainly determined by the one-dimensional "rails," this structure allows scientists to simplify their analysis by ignoring the weak "rungs."

"One-dimensional systems are special because we already know a lot about their theoretical behavior," said Kim. "Therefore, these theoretical predictions for one dimensional systems can be tested by studying quasi one-dimensional materials."


Kim wants to know how the electrons in these "quasi one-dimensional" cuprates respond to x-rays -- how the electrons behave when they are excited, or energized, by the light. An electron, he said, is like a ball of negative charge surrounded by an electric field, and also like a bar magnet with a tiny magnetic field. Both fields affect nearby electrons, normally at the same time. However, in Kim’s studies, when an electron in a quasi one-dimensional cuprate absorbs x-ray energy, the fields separate, allowing the electric field to "speed up" and exert force on other electrons before the magnetic field can reach them.

"This response is unique to quasi one-dimensional materials," Kim said.

Kim will give a talk on this work during the "Excitations in Strongly Correlated Materials I" session at 8:36 a.m. on Friday, March 26, in room 517A. The research is funded by the U.S. Department of Energy’s Office of Basic Energy Sciences within the Office of Science.


NOTE: This press release describes a talk being given by a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory at the March 2004 meeting of the American Physical Society, taking place March 22-26 at the Palais de Congres, Montreal, Canada (http://www.aps.org/meet/MAR04/). This information is embargoed for release at the time of the talk.

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/newsroom
http://www.aps.org/meet/MAR04

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>