Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers suggest that ’dark-matter highway’ may be streaming through Earth

25.03.2004


Findings offer clearer view of how to detect unseen matter in the universe



Astrophysicist Heidi Newberg at Rensselaer Polytechnic Institute and her colleagues suggest that a "highway" of dark matter from another galaxy may be showering down on Earth. The findings may change the way astronomers look for mysterious cosmic particles, long suspected to outweigh known atomic matter.

The findings of Newberg and researchers at the University of Michigan and the University of Utah have been published in the March 19 issue of Physical Review Letters.


Scientists believe that about 90 percent of the mass in the universe is made up of particles called "dark matter." This belief is based on an unseen gravitational pull on the stars, but observations to directly detect dark matter have been sketchy. One Italy-based research group, called DAMA (for DArk MAtter), has made steady claims to have detected particles of dark matter, but so far the results have not been confirmed.

But, the disruption of a dwarf galaxy called Sagittarius, which is being torn apart and consumed by the much larger gravitational pull of the Milky Way, may be the key to reconciling the results of dark matter experiments of DAMA and other research groups.

The dwarf galaxy’s entrails of stars and dust, like a long piece of ribbon, are entangled around and within our galaxy. The so-called "trailing tidal tail" can be seen to extend from Sagittarius’ center and arcs across and below the plane of the Milky Way. The leading part of the tail extends northward above our galaxy where it then turns and appears to be showering shredded galaxy debris down directly on our solar system, Newberg and colleagues say.

"As the Milky Way consumes Sagittarius, it not only rips the stars from the smaller galaxy, but also tears away some of the dark-matter particles from that galaxy. We may be able to directly observe that in the form of a dark-matter highway streaming in one direction through the Earth," says Newberg, who has recently identified stars near the sun that could be part of this leading tidal tail.

WIMPs, or Weakly Interacting Massive Particles, are the most likely form of dark matter. Astrophysicists measure the possibility of WIMP detection based on calculations that the particles are coming from the Milky Way’s galactic halo.

As Earth orbits around the center of the galaxy, the planet flies through this cloud of dark matter. As that happens, billions of these weakly interacting (and therefore difficult to detect) particles could be passing through each of our bodies every second.

As a result of the new findings, scientists now have another source in which to look for these dark-matter particles, says Katherine Freese, University of Michigan researcher and co-author of the Physical Review Letters paper. Freese, her graduate student Matthew Lewis, and Paolo Gondolo from the University of Utah have calculated the effects that the tidal stream would have on dark-matter detection experiments.

"If you expect to see only halo WIMPs, there will be an extra set of particles streaming through the Earth that were not accounted for," Freese says. "Scientists will need to adjust their calculations to look for this. Finding this stream would represent a smoking gun for dark-matter detection."


About Rensselaer

Rensselaer Polytechnic Institute, founded in 1824, is the nation’s oldest technological university. The school offers degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of research centers that are characterized by strong industry partnerships. The Institute is especially well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

Jodi Ackerman | EurekAlert!
Further information:
http://www.rpi.edu/dept/NewsComm/

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>