Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Highway of WIMPs may solve cosmic mystery

22.03.2004


Debris from gobbled-up galaxy could be ’smoking gun’ for dark matter

WIMPs speeding at 670,000 mph on a "highway" in space may be raining onto Earth – a phenomenon that might prove the existence of "dark matter" that makes up most our galaxy and one-fourth of the universe, says a study co-authored by a University of Utah physicist.

Many researchers have long suspected that dark matter may be made of WIMPS or Weakly Interacting Massive Particles, which are theorized subatomic particles. More than 20 groups of physicists worldwide are building or have built devices to detect them.



Scientists who run a WIMP detector named DAMA (Dark Matter) in Italy claimed in 1998 that the underground device sensed WIMPs reaching Earth from an unseen halo of dark matter surrounding our Milky Way galaxy. The claim was doubted by scientists who run other WIMP detectors, which are designed differently than DAMA and have not found WIMPs.

The new study – published in the March 19 issue of the journal Physical Review Letters – advises how the DAMA scientists might prove their claim.

"We’re suggesting a way to check if what DAMA claimed to have seen are really WIMPs," says study co-author Paolo Gondolo, an assistant professor of physics at the University of Utah. "This is about finding out what 90 percent of our galaxy is made of."

Gondolo and colleagues say that in addition to the WIMPs pouring into our Milky Way galaxy from the surrounding halo, a dark matter "highway" of WIMPS may be raining onto our solar system after flying out of Sagittarius, a dwarf galaxy that slowly is being gobbled up and torn apart by gravity from the Milky Way.

The combination of the Milky Way WIMPS and those from the Sagittarius dwarf galaxy should produce a distinct pattern in the Italian data that "would be a smoking gun for WIMP detection," the new study says.

Gondolo conducted the research with physicist Katherine Freese and graduate student Matthew Lewis of the University of Michigan, and astronomer Heidi Jo Newberg of Rensselaer Polytechnic Institute in Troy, N.Y.

The Dark Side of the Universe

Scientists realized a few decades ago that the motions of galaxies within the universe could not be explained by the gravitational pull of visible galaxies, stars and gases. For a long time, scientists said that 10 percent of the universe was visible matter and 90 percent was unseen dark matter filling the voids among stars and galaxies.

In recent years, however, astronomers determined that the universe and its galaxies were flying apart at an accelerating rate, a phenomenon consistent with the existence of an anti-gravitational force known as "dark energy." Gondolo says scientists now believe the universe is about 5 percent visible matter, 25 percent dark matter and 70 percent dark energy.

Unlike dark matter, which is subject to gravity, dark energy is not pulled into our galaxy, so the Milky Way is about 10 percent matter and 90 percent dark matter, Gondolo says.

The spinning motion of the flattened, spiral disk-shaped Milky Way is too fast to be explained merely by the gravity of its visible stars and gases, so scientists believe it is surrounded by a much larger "halo" – actually a flattened sphere – that contains some stars but mostly unseen dark matter.

Over the years, numerous theories were proposed as to the nature of the dark matter: from dim brown dwarf stars that never ignited to the whimsically named MACHOs (Massive Compact Halo Objects) and subatomic WIMPs. Gondolo says WIMPs and other subatomic particles called axions now are considered the most likely candidates to be dark matter.

The DAMA detector, located at Italy’s Gran Sasso National Laboratory, is run by an international collaboration of physicists led by the University of Rome. The DAMA group announced in 1998 that it found evidence for WIMPS.

Because DAMA is underground, overlying rock filters out particles created when cosmic rays hit Earth’s atmosphere and produce showers of smaller particles. WIMPs are "weakly interacting" particles, so they pass through Earth. But they can hit sodium iodide crystals inside DAMA, causing flashes of light and making sodium or iodine ions recoil.

If WIMPs do exist, they flow toward our solar system from the halo around our galaxy. As the Earth orbits around the sun, it sometimes moves "upstream" against the flow of oncoming WIMPs, and sometimes moves with the flow. The DAMA scientists believe this explains the up-and-down pattern in the number of particles detected by DAMA, and supports the assertion those particles are WIMPs.

Other physicists, however, remain unconvinced. Their detectors, which use germanium as a sensor instead of sodium iodide, should be equally sensitive, but have not "seen" WIMPs. They argue the annual fluctuation in the number of particles detected by DAMA may be caused by seasonal changes in the atmosphere, the DAMA detector or DAMA’s environment, so that the particles have not been proven to be WIMPs.

The New Study: A Solution from Sagittarius?

The visible Milky Way is vast, about 100,000 light years across, or about 588 million billion miles (588 times 10 to the 15th power). For eons, the Milky Way has been absorbing and tearing apart the Sagittarius dwarf galaxy, which is one-tenth the Milky Way’s diameter.

Newberg and other astronomers recently discovered two arc-shaped "tails" or streams of stars flowing from Sagittarius. The streams are believed to also contain WIMPs – if they exist. Our solar system sits in one of these streams, which Gondolo and Freese describe as a possible "dark matter ’highway’ raining down upon the solar system."

In the new study, Gondolo and colleagues suggest how the combination of WIMPs from the Milky Way’s halo and from the Sagittarius stream would register on the DAMA detector:

-- The dates of the maximum and minimum number of WIMPs detected by DAMA would shift when dark matter from Sagittarius is considered. That is because the Sagittarius WIMPs hit Earth from a different angle than Milky Way halo WIMPS, changing the dates when the most and the fewest WIMPs hit Earth and thus DAMA. Gondolo says the peak should be May 25 instead of June 2 if Sagittarius WIMPs and halo WIMPs both hit Earth. DAMA found the maximum was May 21, plus or minus 22 days.

-- The "smoking gun" that would prove WIMPS exist is more complicated to explain. When particles hit sodium iodide in DAMA, the ions recoil in proportion to the mass and speed of the incoming particle. Gondolo says WIMPs from the Milky Way halo move at speeds of zero to 600 kilometers per second (1.34 million mph), with an average speed of 220 kilometers per second (about 492,000 mph). WIMPs in the Sagittarius stream or highway all move at 300 kilometers per second (about 671,000 mph). When the recoil energies of the two kinds of WIMPs are combined and plotted on a graph, there should be a steep "step" or drop in the number of collisions with higher recoil energies, reflecting the fact that Sagittarius WIMPs do not exceed 671,000 mph.

If DAMA scientists find that "step" in their data, it should be the smoking gun to prove dark matter exists in the form of WIMPs, Gondolo says.

"This would be a corroboration of their result," he adds. "As way to check if they really have seen WIMPs, they could look for the specific signature of WIMPs in the Sagittarius stream."

Scientists at DAMA are aware of the new study and are rechecking their data to determine if it contains the evidence that could prove the detector found WIMPs. The process could take months, and it will take a few years for newer detectors to confirm the finding, Gondolo says.

He and his colleagues suspect other detectors have not found WIMPs because the particles may be lighter and smaller than expected, so germanium does not recoil much when hit by an incoming WIMP, while DAMA’s ions have measurable recoil.

Gondolo says he studies dark matter because "I want to know what the universe is made of. I was unsatisfied when I learned most of the universe is not made of atoms."


University of Utah Public Relations
201 S Presidents Circle, Room 308
Salt Lake City, Utah 84112-9017
(801) 581-6773 fax: 585-3350

Lee Siegel | EurekAlert!
Further information:
http://www.utah.edu/unews

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>