Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Jupiter’s Moon, Io, come ideas about what Earth may have looked like as a newborn planet

22.03.2004


Lava lakes could be Ionian versions of Earth’s mid-ocean ridges


region on Jupiter’s moon Io may provide clues to what Earth looked like as a ’newborn’ planet, say researchers from UB and JPL (Photo: Courtesy NASA/JPL-Caltech).



Investigations into lava lakes on the surface of Io, the intensely volcanic moon that orbits Jupiter, may provide clues to what Earth looked like in its earliest phases, according to researchers at the University at Buffalo and NASA’s Jet Propulsion Laboratory.
"When I look at the data, it becomes startlingly suggestive to me that this may be a window onto the primitive history of Earth," said Tracy K. P. Gregg, Ph.D., assistant professor of geology in the UB College of Arts and Sciences.

"When we look at Io, we may be seeing what Earth looked like when it was in its earliest stages, akin to what a newborn baby looks like in the first few seconds following birth," she added.



Gregg and Rosaly M. Lopes, Ph.D., research scientist at JPL, gave a presentation about Io’s volcano, Loki, on Tuesday (March 16, 2004) at the Lunar and Planetary Science Conference in Houston.

Scientists have been interested in Loki, considered the most powerful volcano in the solar system, because of debate over whether or not it is an active lava lake, where molten lava is in constant contact with a large reservoir of magma stored in the planet’s crust.

Using models developed to investigate temperature changes on active lava lakes on Earth, Gregg and Lopes have concluded that Loki behaves quite differently from terrestrial lava lakes.

Gregg suggests that Loki and other lava lakes on Io might be more similar volcanologically to fast-spreading mid-ocean ridges on Earth, like the Southern East Pacific Rise.

According to Gregg, plate tectonics on Earth make these features long -- as in thousands of kilometers -- and narrow -- as in less than 10 kilometers wide. Io, on the other hand, has no plate tectonics and a similar release of heat and magma would be circular, like Loki.

"These lava lakes could be an Ionian version of mid-ocean ridges," functioning the way these ridges do on Earth, spilling huge amounts of lava on its surface, thus generating new crust, she said.

During the most intense periods of its eruption cycle, Gregg said, Loki churns out about 1,000 square meters of lava -- about the size of a soccer field -- per second.

"All planets start out hot and spend their ’lifetimes’ trying to get cold," explained Gregg.

This effort by planets to "chill," she explained, is an attempt to attain a similar temperature to that of outer space, which is 4 Kelvin, or minus 269 degrees Celsius.

On Earth, she explained, the shifting of the planet’s tectonic plates, which focus the eruption of volcanoes at their boundaries, function to cool down the planet’s surface.

Io never developed plate tectonics because it is stuck in an incessant orbit between Jupiter and Europa, another of the Jovian planet’s moons.

"Io just never grew up," she said, "since it’s continually being pushed around by Jupiter and Europa."

But, she added, Earth only developed plate tectonics after it had been in existence for perhaps 200 to 500 million years.

Gregg and Lopes analyzed data obtained by the Galileo spacecraft, which orbited Jupiter for 14 years, finally disintegrating in Jupiter’s atmosphere last fall.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | University at Buffalo
Further information:
http://www.buffalo.edu/news/fast-execute.cgi/article-page.html?article=66290009

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>