Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From Jupiter’s Moon, Io, come ideas about what Earth may have looked like as a newborn planet


Lava lakes could be Ionian versions of Earth’s mid-ocean ridges

region on Jupiter’s moon Io may provide clues to what Earth looked like as a ’newborn’ planet, say researchers from UB and JPL (Photo: Courtesy NASA/JPL-Caltech).

Investigations into lava lakes on the surface of Io, the intensely volcanic moon that orbits Jupiter, may provide clues to what Earth looked like in its earliest phases, according to researchers at the University at Buffalo and NASA’s Jet Propulsion Laboratory.
"When I look at the data, it becomes startlingly suggestive to me that this may be a window onto the primitive history of Earth," said Tracy K. P. Gregg, Ph.D., assistant professor of geology in the UB College of Arts and Sciences.

"When we look at Io, we may be seeing what Earth looked like when it was in its earliest stages, akin to what a newborn baby looks like in the first few seconds following birth," she added.

Gregg and Rosaly M. Lopes, Ph.D., research scientist at JPL, gave a presentation about Io’s volcano, Loki, on Tuesday (March 16, 2004) at the Lunar and Planetary Science Conference in Houston.

Scientists have been interested in Loki, considered the most powerful volcano in the solar system, because of debate over whether or not it is an active lava lake, where molten lava is in constant contact with a large reservoir of magma stored in the planet’s crust.

Using models developed to investigate temperature changes on active lava lakes on Earth, Gregg and Lopes have concluded that Loki behaves quite differently from terrestrial lava lakes.

Gregg suggests that Loki and other lava lakes on Io might be more similar volcanologically to fast-spreading mid-ocean ridges on Earth, like the Southern East Pacific Rise.

According to Gregg, plate tectonics on Earth make these features long -- as in thousands of kilometers -- and narrow -- as in less than 10 kilometers wide. Io, on the other hand, has no plate tectonics and a similar release of heat and magma would be circular, like Loki.

"These lava lakes could be an Ionian version of mid-ocean ridges," functioning the way these ridges do on Earth, spilling huge amounts of lava on its surface, thus generating new crust, she said.

During the most intense periods of its eruption cycle, Gregg said, Loki churns out about 1,000 square meters of lava -- about the size of a soccer field -- per second.

"All planets start out hot and spend their ’lifetimes’ trying to get cold," explained Gregg.

This effort by planets to "chill," she explained, is an attempt to attain a similar temperature to that of outer space, which is 4 Kelvin, or minus 269 degrees Celsius.

On Earth, she explained, the shifting of the planet’s tectonic plates, which focus the eruption of volcanoes at their boundaries, function to cool down the planet’s surface.

Io never developed plate tectonics because it is stuck in an incessant orbit between Jupiter and Europa, another of the Jovian planet’s moons.

"Io just never grew up," she said, "since it’s continually being pushed around by Jupiter and Europa."

But, she added, Earth only developed plate tectonics after it had been in existence for perhaps 200 to 500 million years.

Gregg and Lopes analyzed data obtained by the Galileo spacecraft, which orbited Jupiter for 14 years, finally disintegrating in Jupiter’s atmosphere last fall.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | University at Buffalo
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>