Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest ever solar flare was even bigger than thought

16.03.2004


Physicists in New Zealand have shown that last November’s record-breaking solar explosion was much larger than previously estimated, thanks to innovative research using the upper atmosphere as a gigantic x-ray detector. Their findings have been accepted for 17 March publication in Geophysical Research Letters, published by the American Geophysical Union.




On 4 November 2003, the largest solar flare ever recorded exploded from the Sun’s surface, sending an intense burst of radiation streaming towards the Earth. Before the storm peaked, x-rays overloaded the detectors on the Geostationary Operational Environmental Satellites (GOES), forcing scientists to estimate the flare’s size.

Taking a different route, researchers from the University of Otago used radio wave-based measurements of the x-rays’ effects on the Earth’s upper atmosphere to revise the flare’s size from a merely huge X28 to a "whopping" X45, say researchers Neil Thomson, Craig Rodger, and Richard Dowden. X-class flares are major events that can trigger radio blackouts around the world and long-lasting radiation storms in the upper atmosphere that can damage or destroy satellites. The biggest previous solar flares on record were rated X20, on 2 April 2001 and 16 August 1989.


"This makes it more than twice as large as any previously recorded flare, and if the accompanying particle and magnetic storm had been aimed at the Earth, the damage to some satellites and electrical networks could have been considerable," says Thomson. Their calculations show that the flare’s x-ray radiation bombarding the atmosphere was equivalent to that of 5,000 Suns, though none of it reached the Earth’s surface, the researchers say.

At the time of the flare, the researchers were probing the ionosphere with radio waves as part of a long-term research program. Their new measurement comes from observations of the indirect effects of the increased x-ray radiation on very low frequency (VLF) radio transmissions across the Pacific Ocean from Washington State, North Dakota, and Hawaii to their receivers in Dunedin, New Zealand.

"Increases in x-rays enhance the ionosphere, causing its lowest region to decrease in altitude, which in turn affects the phase of VLF transmissions. Our previous research shows that these phase shifts are proportional to the number of kilometers [miles] by which the ionosphere is lowered," they say. As the lowering is known to relate directly to the amount of x-ray radiation present, the team could make a new measurement of the flare’s size, they say.

"We were at the right place, at the right time with the right knowledge--which was based on nearly 15 years of work by staff and students in the Physics Department’s Space Physics Group." The research would not have been possible, they added, without data provided by the U.S. National Oceanic and Atmospheric Administration (NOAA) Space Environment Center, which came up with the initial X28 estimate.

"We used their solar measurements to calibrate the response of the atmosphere to x-rays, so when this event overloaded the satellite detectors, we were in a unique position to make this measurement. Given that any future flares are unlikely to be large enough to overload the ionosphere, we believe that our new method has great advantages in determining their size in the event of satellite detector overloads," they say.

Harvey Leifert | AGU
Further information:
http://www.agu.org/

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

World's first solar fuels reactor for night passes test

21.02.2018 | Earth Sciences

Similarities found in cancer initiation in kidney, liver, stomach, pancreas

21.02.2018 | Health and Medicine

First line of defence against influenza further decoded

21.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>