Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two asteroid fly-bys for Rosetta

11.03.2004


ESA PR 15-2004. Today the Rosetta Science Working Team has made the final selection of the asteroids that Rosetta will observe at close quarters during its journey to Comet 67P/Churyumov-Gerasimenko. Steins and Lutetia lie in the asteroid belt between the orbits of Mars and Jupiter.


Rosetta passes two asteroids on its ten year journey to comet 67P/Churyumov-Gerasimenko.

Credits: ESA/AOES Medialab



Rosetta’s scientific goals always included the possibility of studying one or more asteroids from close range. However, only after Rosetta’s launch and its insertion into interplanetary orbit could the ESA mission managers assess how much fuel was actually available for fly-bys. Information from the European Space Operations Centre (ESOC) in Germany enabled Rosetta’s Science Working Team to select a pair of asteroids of high scientific interest, well within the fuel budget.

The selection of these two excellent targets was made possible by the high accuracy with which the Ariane 5 delivered the spacecraft into its orbit. This of course leaves sufficient fuel for the core part of the mission, orbiting Comet 67P/Churyumov-Gerasimenko for 17 months when Rosetta reaches its target in 2014.


Asteroids are primitive building blocks of the Solar System, left over from the time of its formation about 4600 million years ago. Only a few asteroids have so far been observed from nearby. They are very different in shape and size, ranging from a few kilometres to over 100 kilometres across, and in their composition.

The targets selected for Rosetta, Steins and Lutetia, have rather different properties. Steins is relatively small, with a diameter of a few kilometres, and will be visited by Rosetta on 5 September 2008 at a distance of just over 1700 kilometres. This encounter will take place at a relatively low speed of about 9 kilometres per second during Rosetta’s first excursion into the asteroid belt.

Lutetia is a much bigger object, about 100 kilometres in diameter. Rosetta will pass within about 3000 kilometres on 10 July 2010 at a speed of 15 kilometres per second. This will be during Rosetta’s second passage through the asteroid belt.

Rosetta will obtain spectacular images as it flies by these primordial rocks. Its onboard instruments will provide information on the mass and density of the asteroids, thus telling us more about their composition, and will also measure their subsurface temperature and look for gas and dust around them.

Rosetta began its journey just over a week ago, on 2 March, and is well on its way. Commissioning of its instruments has already started and is proceeding according to plan.

"Comets and asteroids are the building blocks of our Earth and the other planets in the Solar System. Rosetta will conduct the most thorough analysis so far of three of these objects," said Prof. David Southwood, Director of ESA’s Science Programme. "Rosetta will face lots of challenges during its 12-year journey, but the scientific insights that we will gain into the origin of the Solar System and, possibly, of life are more than rewarding."

For further information, please contact:

ESA Media Relations Division
Tel: +33(0)1.53.69.7155
Fax: +33(0)1.53.69.7690

| ESA

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>