Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First silicate stardust found in a meteorite

05.03.2004


Ann Nguyen chose a risky project for her graduate studies at Washington University in St. Louis. A university team had already sifted through 100,000 grains from a meteorite to look for a particular type of stardust — without success.




In 2000, Nguyen decided to try again. About 59,000 grains later, her gutsy decision paid off. In the March 5 issue of Science, Nguyen and her advisor, Ernst K. Zinner, Ph.D., research professor of physics and of earth and planetary sciences, both in Arts & Sciences, describe nine specks of silicate stardust — presolar silicate grains — from one of the most primitive meteorites known.

"Finding presolar silicates in a meteorite tells us that the solar system formed from gas and dust, some of which never got very hot, rather than from a hot solar nebula," Zinner says. "Analyzing such grains provides information about their stellar sources, nuclear processes in stars, and the physical and chemical compositions of stellar atmospheres."


In 1987, Zinner and colleagues at Washington University and a group of scientists at the University of Chicago found the first stardust in a meteorite. Those presolar grains were specks of diamond and silicon carbide. Although other types have since been discovered in meteorites, none were made of silicate, a compound of silicon, oxygen and other elements such as magnesium and iron.

"This was quite a mystery because we know, from astronomical spectra, that silicate grains appear to be the most abundant type of oxygen-rich grain made in stars," Nguyen says. "But until now, presolar silicate grains have been isolated only from samples of interplanetary dust particles from comets."

Our solar system formed from a cloud of gas and dust that were spewed into space by exploding red giants and supernovae. Some of this dust formed asteroids, and meteorites are fragments knocked off asteroids. Most of the particles in meteorites resemble each other because dust from different stars became homogenized in the inferno that shaped the solar system. Pure samples of a few stars became trapped deep inside some meteorites, however. Those grains that are oxygen-rich can be recognized by their unusual ratios of oxygen isotopes.

Nguyen, a graduate student in earth and planetary sciences, analyzed about 59,000 grains from Acfer 094, a meteorite that was found in the Sahara in 1990. She separated the grains in water instead of with harsh chemicals, which can destroy silicates. She also used a new type of ion probe called the NanoSIMS (Secondary Ion Mass Spectrometer), which can resolve objects smaller than a micrometer (one millionth of a meter).

Zinner and Frank Stadermann, Ph.D., senior research scientist in the Laboratory for Space Sciences at the university, helped design and test the NanoSIMS, which is made by CAMECA in Paris. At a cost of $2 million, Washington University acquired the first instrument in the world in 2001.

Ion probes direct a beam of ions onto one spot on a sample. The beam dislodges some of the sample’s own atoms, some of which become ionized. This secondary beam of ions enters a mass spectrometer that is set to detect a particular isotope. Thus, ion probes can identify grains that have an unusually high or low proportion of that isotope.

Unlike other ion probes, however, the NanoSIMS can detect five different isotopes simultaneously. The beam can also travel automatically from spot to spot so that many hundreds or thousands of grains can be analyzed in one experimental setup. "The NanoSIMS was essential for this discovery," Zinner says. "These presolar silicate grains are very small — only a fraction of a micrometer. The instrument’s high spatial resolution and high sensitivity made these measurements possible."

Using a primary beam of cesium ions, Nguyen painstakingly measured the amounts of three oxygen isotopes — 16O, 17O and 18O — in each of the many grains she studied. Nine grains, with diameters from 0.1 to 0.5 micrometers, had unusual oxygen isotope ratios and were highly enriched in silicon. These presolar silicate grains fell into four groups. Five grains were enriched in 17O and slightly depleted in 18O, suggesting that deep mixing in red giant or asymptotic giant branch stars was responsible for their oxygen isotopic compositions.

One grain was very depleted in 18O and therefore was likely produced in a low-mass star when surface material descended into areas hot enough to support nuclear reactions. Another was enriched in 16O, which is typical of grains from stars that contain fewer elements heavier than helium than does our sun. The final two grains were enriched in both 17O and 18O and so could have come from supernovae or stars that are more enriched in elements heavier than helium compared with our sun.

By obtaining energy dispersive x-ray spectra, Nguyen determined the likely chemical composition of six of the presolar grains. There appear to be two olivines and two pyroxenes, which contain mostly oxygen, magnesium, iron and silicon but in differing ratios. The fifth is an aluminum-rich silicate, and the sixth is enriched in oxygen and iron and could be glass with embedded metal and sulfides.

The preponderance of iron-rich grains is surprising, Nguyen says, because astronomical spectra have detected more magnesium-rich grains than iron-rich grains in the atmospheres around stars. "It could be that iron was incorporated into these grains when the solar system was being formed," she explains.

This detailed information about stardust proves that space science can be done in the laboratory, Zinner says. "Analyzing these small specks can give us information, such as detailed isotopic ratios, that cannot be obtained by the traditional techniques of astronomy," he adds.

Nguyen now plans to look at the ratios of silicon and magnesium isotopes in the nine grains. She also wants to analyze other types of meteorites. "Acfer 094 is one of the most primitive meteorites that has been found," she says. "So we would expect it to have the greatest abundance of presolar grains. By looking at meteorites that have undergone more processing, we can learn more about the events that can destroy those grains."

Linda Sage | WUSTL
Further information:
http://news-info.wustl.edu/news/page/normal/737.html

More articles from Physics and Astronomy:

nachricht Witnessing turbulent motion in the atmosphere of a distant star
23.08.2017 | Max-Planck-Institut für Radioastronomie

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>