Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Gives Lowdown On High-Temperature Superconductivity

04.03.2004


A new study by theoretical physicists at the University of Toronto and the University of California at Los Angeles (ULCA) could bring scientists one step closer to the dream of a superconductor that functions at room temperature, rather than the frigid temperatures more commonly found in deep space.


Microscopic image of a ceramic superconductor
Image: Michael W. Davidson
Florida State University



The findings, which appear in the March 4 issue of the journal Nature, identify three factors that explain a perplexing pattern in the temperatures at which multi-layered ceramic materials become superconductors. The study could advance research in medical imaging, electrical power transmission and magnetically levitating trains. Its authors are U of T physics professor Hae-Young Kee and post-doctoral fellow Klaus Völker, and Professor Sudip Chakravarty of UCLA’s physics and astronomy department.

Superconductivity is a phenomenon that occurs when certain metals are cooled to near absolute zero, a temperature equivalent to zero degrees Kelvin (K), -273 C or -459 F. In ceramic materials, the phenomenon appears at about 100K. At a so-called critical temperature—that varies depending on the number of layers within the ceramic substance—the material becomes capable of conducting electricity without any energy loss.


Despite the value of such an efficient system, the supercooling—usually done with liquid nitrogen or liquid helium—makes superconductors impractical for many applications. “A room temperature superconductor would be a revolution, but even a superconductor with a higher critical temperature would have extremely important implications for multiple industries,” says Kee, who holds the Canada Research Chair in Theoretical Condensed Matter Physics.

Materials scientists have developed a group of “high-temperature” superconductors made with layers of copper oxides sandwiched between insulating filler material. This material reaches critical temperatures in the range of roughly 130K—the highest know critical temperatures to date. Previous studies on superconductors have established that while the critical temperature rises as the number of layers increase from one to three, it then drops off. By the time the number of layers rises to seven, the critical temperature has fallen below that of the single-layer superconductor.

Scientists have previously suggested that the critical temperature increase between one- and three-layered materials is due to the ability of electron pairs to tunnel between the layers of superconducting material.

Now, Kee and her colleagues have identified the factors that combine with a mechanism—known as the competing order—that lowers a superconductor’s critical temperature in materials with more than three layers. That “competing order,” in turn, is dependent on an uneven distribution of electrons, resulting in a charge imbalance between the material’s multiple layers. Kee and her colleagues are the first group to put these three factors—the tunnelling, the competing order and the charge imbalance—together.

“If we can find a way to affect the charge imbalance, we could suppress the competing order and develop superconducting materials with higher and higher critical temperatures,” says Kee. “And if you can push the superconducting temperature higher, then it will become much cheaper to apply this technology.”

The research was funded by the U.S. National Science Foundation, the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute of Advanced Research, the Canada Research Chairs program and the Alfred P. Sloan Foundation.


CONTACT:

Klaus Völker
Department of Physics
416-333-5633 (cell)
voelker@physics.utoronto.ca

Hae-Young Kee (available March 4)
Department of Physics
416-978-5196
hykee@physics.utoronto.ca

Nicolle Wahl
U of T Public Affairs
416-978-6974
nicolle.wahl@utoronto.ca

Nicolle Wahl | University of Toronto
Further information:
http://www.utoronto.ca
http://www.newsandevents.utoronto.ca/bin5/040303b.asp

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>