Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Information paradox solved? If so, black holes are ’fuzzballs’

02.03.2004


Stephen Hawking and Kip Thorne may owe John Preskill a set of encyclopedias


Samir Mathur



In 1997, the three cosmologists made a famous bet as to whether information that enters a black hole ceases to exist -- that is, whether the interior of a black hole is changed at all by the characteristics of particles that enter it.

Hawking’s research suggested that the particles have no effect whatsoever. But his theory violated the laws of quantum mechanics and created a contradiction known as the “information paradox.”


Now physicists at Ohio State University have proposed a solution using string theory, a theory which holds that all particles in the universe are made of tiny vibrating strings.

Samir Mathur and his colleagues have derived an extensive set of equations that strongly suggest that the information continues to exist -- bound up in a giant tangle of strings that fills a black hole from its core to its surface.

The finding suggests that black holes are not smooth, featureless entities as scientists have long thought.

Instead, they are stringy “fuzzballs.”

Mathur, professor of physics at Ohio State, suspects that Hawking and Thorne won’t be particularly surprised by the outcome of the study, which appears in the March 1 issue of the journal Nuclear Physics B.

In their wager, Hawking, professor of mathematics at the University of Cambridge, and Thorne, professor of theoretical physics at Caltech, bet that information that enters a black hole is destroyed, while Preskill -- also a professor of theoretical physics at Caltech -- took the opposite view. The stakes were a set of encyclopedias.

“I think that most people gave up on the idea that information was destroyed once the idea of string theory rose to prominence in 1995,” Mathur said. “It’s just that nobody has been able to prove that the information survives before now.”

In the classical model of how black holes form, a supermassive object, such as a giant star, collapses to form a very small point of infinite gravity, called a singularity. A special region in space surrounds the singularity, and any object that crosses the region’s border, known as the event horizon, is pulled into the black hole, never to return.

In theory, not even light can escape from a black hole.

The diameter of the event horizon depends on the mass of the object that formed it. For instance, if the sun collapsed into a singularity, its event horizon would measure approximately 3 kilometers (1.9 miles) across. If Earth followed suit, its event horizon would only measure 1 centimeter (0.4 inches).

As to what lies in the region between a singularity and its event horizon, physicists have always drawn a blank, literally. No matter what type of material formed the singularity, the area inside the event horizon was supposed to be devoid of any structure or measurable characteristics.

And therein lies the problem.

“The problem with the classical theory is that you could use any combination of particles to make the black hole -- protons, electrons, stars, planets, whatever -- and it would make no difference. There must be billions of ways to make a black hole, yet with the classical model the final state of the system is always the same,” Mathur said.

That kind of uniformity violates the quantum mechanical law of reversibility, he explained. Physicists must be able to trace the end product of any process, including the process that makes a black hole, back to the conditions that created it.

If all black holes are the same, then no black hole can be traced back to its unique beginning, and any information about the particles that created it is lost forever at the moment the hole forms.

“Nobody really believes that now, but nobody could ever find anything wrong with the classical argument, either,” Mathur said. “We can now propose what went wrong.”

In 2000, string theorists named the information paradox number eight on their top-ten list of physics problems to be solved during the next millennium. That list included questions such as “what is the lifetime of a proton?” and “how can quantum gravity help explain the origin of the universe?”

Mathur began working on the information paradox when he was an assistant professor at the Massachusetts Institute of Technology, and he attacked the problem full time after joining the Ohio State faculty in 2000.

With postdoctoral researcher Oleg Lunin, Mathur computed the structure of objects that lie in-between simple string states and large classical black holes. Instead of being tiny objects, they turned out to be large. Recently, he and two doctoral students -- Ashish Saxena and Yogesh Srivastava -- found that the same picture of a “fuzzball” continued to hold true for objects more closely resembling a classic black hole. Those new results appear in Nuclear Physics B.

According to string theory, all the fundamental particles of the universe -- protons, neutrons, and electrons -- are made of different combinations of strings. But as tiny as strings are, Mathur believes they can form large black holes through a phenomenon called fractional tension.

Strings are stretchable, he said, but each carries a certain amount of tension, as does a guitar string. With fractional tension, the tension decreases as the string gets longer.

Just as a long guitar string is easier to pluck than a short guitar string, a long strand of quantum mechanical strings joined together is easier to stretch than a single string, Mathur said.

So when a great many strings join together, as they would in order to form the many particles necessary for a very massive object like a black hole, the combined ball of string is very stretchy, and expands to a wide diameter.

When the Ohio State physicists derived their formula for the diameter of a fuzzy black hole made of strings, they found that it matched the diameter of the black hole event horizon suggested by the classical model.

Since Mathur’s conjecture suggests that strings continue to exist inside the black hole, and the nature of the strings depends on the particles that made up the original source material, then each black hole is as unique as are the stars, planets, or galaxy that formed it. The strings from any subsequent material that enters the black hole would remain traceable as well.

That means a black hole can be traced back to its original conditions, and information survives.

This research was supported in part by the U.S. Department of Energy.

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/fuzzball.htm

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>