Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enigmatic X-ray sources may point to new class of black holes

02.03.2004


Photo: Chandra image of the spiral galaxy M101 (NASA/CXC/SAO/DiStefano et al.)


Mysterious, powerful X-ray sources found in nearby galaxies may represent a new class of objects, according to data from NASA’s Chandra X-ray Observatory. These sources, which are not as hot as typical neutron-star or black-hole X-ray sources, could be a large new population of black holes with masses several hundred times that of the sun.

"The challenge raised by the discovery of these sources is to understand how they produce so much X-ray power at temperatures of a few million degrees," said Rosanne Di Stefano from the Harvard-Smithsonian Center for Astrophysics in Cambridge , Mass. , and Tufts University in Medford , Mass. Di Stefano is lead author of a series of papers published in or submitted to The Astrophysical Journal and The Astrophysical Journal Letters.

Until a few years ago, astronomers only knew of two sizes of black holes: stellar black holes, with masses about 10 times the sun, and supermassive black holes located at the centers of galaxies, with masses ranging from millions to billions times the sun. Recent evidence suggests a class of "intermediate-mass" black holes may also exist.



Searching for quasisoft sources may be a new way to identify those X-ray sources most likely to be intermediate-mass black holes," said Albert Kong of the Center for Astrophysics (CfA) and a member of the team.

The enigmatic objects found by the Chandra team are called "quasisoft" sources, because they have a temperature in the range of 1 million to 4 million degrees Celsius. On the one hand this temperature range is below the 10 million to 100 million-degree gas associated with "hard" X-ray sources, such as neutron stars or stellar-mass black holes. On the other hand the quasisoft-source temperatures are hotter than the several hundred-thousand-degree gas associated with "supersoft" X-ray sources due to white dwarfs.

Di Stefano and her colleagues determined the temperatures of individual X-ray emitting objects in four galaxies by measuring their X-ray spectra, or distribution of X-rays with energy. They found that between 15 percent and 20 percent of all detected sources fell in the quasisoft temperature range.

The power output of quasisoft sources is comparable to or greater than that of neutron stars or stellar-mass black holes fueled by the infall of matter from companion stars. This implies the region that produces the X-rays in a quasisoft source is dozens of times larger.

One possibility is the quasisoft sources represent standard neutron stars or stellar black holes where the associated hot gas cloud is, for some as yet unknown reason, much larger than usual. Or the quasisoft X-rays could be coming from the vicinity of intermediate-mass black holes having masses a hundred or more times greater than the mass of the sun. This would increase the diameter of the event horizon and could explain the larger sizes and lower temperatures associated with quasisoft sources.

As more quasisoft sources are discovered, the types of galaxies in which they reside and where they are located in a galaxy should give astronomers additional clues as to their nature. The present study indicates that they occur in various locations in elliptical as well as spiral galaxies.

Di Stefano and her CfA team observed quasisoft sources in several galaxies with Chandra including M101, M83, M51 and NGC 4697. NASA’s Marshall Space Flight Center , Huntsville , Ala. , manages the Chandra program for NASA’s Office of Space Science, Washington. Northrop Grumman of Redondo Beach , Calif. , formerly

TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge , Mass.

Steve Roy | NASA / MSFC
Further information:
http://www1.msfc.nasa.gov/NEWSROOM/news/releases/2004/04-025.html
http://chandra.harvard.edu/
http://chandra.nasa.gov/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>