Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists observe anomalies in makeup of interplanetary dust particle

27.02.2004


A photo of the nucleus of comet Wild-2 observed by the STARDUST spacecraft Jan. 2, 2004 (image courtesty of NASA-JPL). Inset (lower right) is a secondary image (green/blue) of an interplanetary dust particle (IDP) with a 15 nitrogen-enriched and 13 carbon-depleted (red/yellow) "hotspot" containing similar atomic interstellar molecules.The adenine molecule (N5C5H5) is one possible carrier of the 13 carbon and 15 nitrogen anomalies. Cometary IDPs were likely a major source of organic matter accreted by the prebiotic earth.


Scientists from Lawrence Livermore National Laboratory and Washington University have seen carbon and nitrogen anomalies on a particle of interplanetary dust that provides a clue as to how interstellar organic matter was incorporated into the solar system.

Interplanetary dust particles (IDPs) gathered from the Earth’s stratosphere are complex collections of primitive solar system material and carry various isotopic anomalies. Using an ion microprobe that allows isotopic imaging at a scale of 100 nanometers, the astrophysicists conducted simultaneous carbon and nitrogen isotopic imaging measurements of the IDP, nicknamed Benavente. They noticed that the isotope carbon 13 decreased while nitrogen 15 increased in Benavente.

The results appear in the Feb. 27 issue of the journal Science.



Interstellar molecular clouds are the principal formation sites of organic matter in the Milky Way. A variety of simple molecules are produced in dense cold clouds. At such low temperatures, where the difference in chemical binding energy exceeds thermal energy, mass fractionation produces molecules with isotopic ratios that can be very different from molecules found on Earth.

These anomalies may provide a fingerprint for how abiotic interstellar organic matter was incorporated into the solar system.

The authors concluded that the observation of correlated carbon and nitrogen anomalies establishes that IDPs contain heteroatomic organic compounds of presolar interstellar origins that are more complex than the simple compounds implied by earlier measurements. During the prebiotic period, Earth may have accreted as much as a centimeter of abiotic carbonaceous matter every million years, much of it settling to the surface within small, high-surface-area IDPs. "This constant flux of particulate organic matter continues to be delivered to the surface of terrestrial planets today and includes hetero-atomic interstellar molecules such as those found in Benavente. It is not unreasonable to speculate that heteroatomic interstellar molecular matter may be relevant to the origins of life on earth" said John Bradley, director of Livermore’s Institute for Geophysics and Planetary Physics and one of the authors of the paper. Other Livermore authors include Zurong Dai, Sasa Bajt and Giles Graham.


Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by the University of California for the U.S. Department of Energy’s National Nuclear Security Administration.

Anne Stark | LLNL
Further information:
http://www.llnl.gov/llnl/06news/NewsReleases/2004/NR-04-02-15.html

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>