Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray sources speed protein crystallography

17.02.2004


Thirty years ago the determination of a protein structure required years of effort and typically was sufficient for a Ph.D. thesis. Today, due to advances in synchrotron X-ray sources and detectors, protein crystal structures can be calculated in just hours, "enabling many types of studies that were previously inconceivable," according to a leading researcher at Cornell University, Ithaca, N.Y.



Sol Gruner, a Cornell physics professor and an expert in designing and building fast, large-area X-ray imaging detectors, says that high-powered synchrotron X-ray sources and advanced detectors have been largely responsible for the progress in calculating protein structures. "The biotechnological revolution of the last two decades is built upon the twin pillars of protein structure determination and genetic engineering," he says.

Indeed, says Gruner, "Synchrotron X-radiation has become an enormously powerful tool throughout science and technology."


Gruner presented an overview of these advances today (Feb. 16) in a talk, "Future X-ray Sources and Detector Technologies," at the annual meeting of the American Association for the Advancement of Science in Seattle. His talk was part of a symposium, "Synchrotron Radiation as a Frontier Multidisciplinary Scientific Tool," organized by Ernest Fontes, assistant director of the Cornell High Energy Synchrotron Source (CHESS), Doon Gibbs of Brookhaven National Laboratory and Keith Hodgson of Stanford University/Stanford Linear Accelerator Center (SLAC).

Synchrotron radiation is emitted when highly energetic electrons are deflected by magnetic fields. All existing synchrotron X-ray facilities are based on an accelerator physics technology called the storage ring. In such a ring, bunches of electrons are kept in a roughly circular orbit by magnetic deflecting and focusing structures. At Cornell, the National Science Foundation (NSF)-supported Cornell Electron Storage Ring (CESR) is the X-ray source for CHESS. Usage of synchrotron radiation has grown steadily over the past three decades as synchrotron source, X-ray optics and detector technology have steadily advanced. Gruner, who is director of CHESS, explained how novel technologies now being developed will couple with developing semiconductor X-ray detectors to open new avenues of scientific exploration.

One such new technology, which promises to remove many of the present limitations of existing storage ring X-ray sources, is based on the use of a superconducting linear accelerator (or linac) to continuously accelerate and recover the energy from an electron beam. This device, called an Energy Recovery Linac (ERL), will be able to produce X-ray beams of unprecedented brilliance and small size. Gruner is the principal investigator on a proposal to the NSF to build an ERL prototype, based on collaborative designs between Cornell and the Thomas Jefferson National Accelerator Facility, Newport News, Va.

Another future source technology, also based on linacs, is the X-ray Free Electron Laser, or XFEL. An XFEL is slated for construction at SLAC. ERL and XFEL sources, when combined with evolving solid-state X-ray detectors, Gruner said, will allow scientists to examine the structure of matter in ways previously impossible.

"This is a historically opportune time to acknowledge and celebrate the multidisciplinary nature of synchrotron radiation and discuss, in open forum, our collective views and needs for future outstanding X-ray facilities," Gruner noted.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/AAAS.Gruner.deb.html

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Molecular switch will facilitate the development of pioneering electro-optical devices

24.05.2018 | Power and Electrical Engineering

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>