Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray sources speed protein crystallography

17.02.2004


Thirty years ago the determination of a protein structure required years of effort and typically was sufficient for a Ph.D. thesis. Today, due to advances in synchrotron X-ray sources and detectors, protein crystal structures can be calculated in just hours, "enabling many types of studies that were previously inconceivable," according to a leading researcher at Cornell University, Ithaca, N.Y.



Sol Gruner, a Cornell physics professor and an expert in designing and building fast, large-area X-ray imaging detectors, says that high-powered synchrotron X-ray sources and advanced detectors have been largely responsible for the progress in calculating protein structures. "The biotechnological revolution of the last two decades is built upon the twin pillars of protein structure determination and genetic engineering," he says.

Indeed, says Gruner, "Synchrotron X-radiation has become an enormously powerful tool throughout science and technology."


Gruner presented an overview of these advances today (Feb. 16) in a talk, "Future X-ray Sources and Detector Technologies," at the annual meeting of the American Association for the Advancement of Science in Seattle. His talk was part of a symposium, "Synchrotron Radiation as a Frontier Multidisciplinary Scientific Tool," organized by Ernest Fontes, assistant director of the Cornell High Energy Synchrotron Source (CHESS), Doon Gibbs of Brookhaven National Laboratory and Keith Hodgson of Stanford University/Stanford Linear Accelerator Center (SLAC).

Synchrotron radiation is emitted when highly energetic electrons are deflected by magnetic fields. All existing synchrotron X-ray facilities are based on an accelerator physics technology called the storage ring. In such a ring, bunches of electrons are kept in a roughly circular orbit by magnetic deflecting and focusing structures. At Cornell, the National Science Foundation (NSF)-supported Cornell Electron Storage Ring (CESR) is the X-ray source for CHESS. Usage of synchrotron radiation has grown steadily over the past three decades as synchrotron source, X-ray optics and detector technology have steadily advanced. Gruner, who is director of CHESS, explained how novel technologies now being developed will couple with developing semiconductor X-ray detectors to open new avenues of scientific exploration.

One such new technology, which promises to remove many of the present limitations of existing storage ring X-ray sources, is based on the use of a superconducting linear accelerator (or linac) to continuously accelerate and recover the energy from an electron beam. This device, called an Energy Recovery Linac (ERL), will be able to produce X-ray beams of unprecedented brilliance and small size. Gruner is the principal investigator on a proposal to the NSF to build an ERL prototype, based on collaborative designs between Cornell and the Thomas Jefferson National Accelerator Facility, Newport News, Va.

Another future source technology, also based on linacs, is the X-ray Free Electron Laser, or XFEL. An XFEL is slated for construction at SLAC. ERL and XFEL sources, when combined with evolving solid-state X-ray detectors, Gruner said, will allow scientists to examine the structure of matter in ways previously impossible.

"This is a historically opportune time to acknowledge and celebrate the multidisciplinary nature of synchrotron radiation and discuss, in open forum, our collective views and needs for future outstanding X-ray facilities," Gruner noted.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/AAAS.Gruner.deb.html

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>