Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New X-ray sources speed protein crystallography

17.02.2004


Thirty years ago the determination of a protein structure required years of effort and typically was sufficient for a Ph.D. thesis. Today, due to advances in synchrotron X-ray sources and detectors, protein crystal structures can be calculated in just hours, "enabling many types of studies that were previously inconceivable," according to a leading researcher at Cornell University, Ithaca, N.Y.



Sol Gruner, a Cornell physics professor and an expert in designing and building fast, large-area X-ray imaging detectors, says that high-powered synchrotron X-ray sources and advanced detectors have been largely responsible for the progress in calculating protein structures. "The biotechnological revolution of the last two decades is built upon the twin pillars of protein structure determination and genetic engineering," he says.

Indeed, says Gruner, "Synchrotron X-radiation has become an enormously powerful tool throughout science and technology."


Gruner presented an overview of these advances today (Feb. 16) in a talk, "Future X-ray Sources and Detector Technologies," at the annual meeting of the American Association for the Advancement of Science in Seattle. His talk was part of a symposium, "Synchrotron Radiation as a Frontier Multidisciplinary Scientific Tool," organized by Ernest Fontes, assistant director of the Cornell High Energy Synchrotron Source (CHESS), Doon Gibbs of Brookhaven National Laboratory and Keith Hodgson of Stanford University/Stanford Linear Accelerator Center (SLAC).

Synchrotron radiation is emitted when highly energetic electrons are deflected by magnetic fields. All existing synchrotron X-ray facilities are based on an accelerator physics technology called the storage ring. In such a ring, bunches of electrons are kept in a roughly circular orbit by magnetic deflecting and focusing structures. At Cornell, the National Science Foundation (NSF)-supported Cornell Electron Storage Ring (CESR) is the X-ray source for CHESS. Usage of synchrotron radiation has grown steadily over the past three decades as synchrotron source, X-ray optics and detector technology have steadily advanced. Gruner, who is director of CHESS, explained how novel technologies now being developed will couple with developing semiconductor X-ray detectors to open new avenues of scientific exploration.

One such new technology, which promises to remove many of the present limitations of existing storage ring X-ray sources, is based on the use of a superconducting linear accelerator (or linac) to continuously accelerate and recover the energy from an electron beam. This device, called an Energy Recovery Linac (ERL), will be able to produce X-ray beams of unprecedented brilliance and small size. Gruner is the principal investigator on a proposal to the NSF to build an ERL prototype, based on collaborative designs between Cornell and the Thomas Jefferson National Accelerator Facility, Newport News, Va.

Another future source technology, also based on linacs, is the X-ray Free Electron Laser, or XFEL. An XFEL is slated for construction at SLAC. ERL and XFEL sources, when combined with evolving solid-state X-ray detectors, Gruner said, will allow scientists to examine the structure of matter in ways previously impossible.

"This is a historically opportune time to acknowledge and celebrate the multidisciplinary nature of synchrotron radiation and discuss, in open forum, our collective views and needs for future outstanding X-ray facilities," Gruner noted.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/AAAS.Gruner.deb.html

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>