Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hubble and Keck find farthest known galaxy in the Universe

16.02.2004


An international team of astronomers may have set a new record in discovering what is the most distant known galaxy in the Universe. Located an estimated 13 billion light-years away, the object is being viewed at a time only 750 million years after the big bang, when the Universe was barely 5 percent of its current age.


Close-up of the large galaxy cluster Abell 2218
Credits: European Space Agency, NASA, J.-P. Kneib (Observatoire Midi-Pyrénées) and R. Ellis (Caltech)



The primeval galaxy was identified by combining the power of the NASA/ESA Hubble Space Telescope and CARA’s W. M. Keck Telescopes on Mauna Kea in Hawaii. These great observatories got a boost from the added magnification of a natural ‘cosmic gravitational lens’ in space that further amplifies the brightness of the distant object.

The newly discovered galaxy is likely to be a young galaxy shining during the end of the so-called "Dark Ages" - the period in cosmic history which ended with the first galaxies and quasars transforming opaque, molecular hydrogen into the transparent, ionized Universe we see today.


The new galaxy was detected in a long exposure of the nearby cluster of galaxies Abell 2218, taken with the Advanced Camera for Surveys on board the Hubble Space Telescope. This cluster is so massive that the light of distant objects passing through the cluster actually bends and is amplified, much as a magnifying glass bends and magnifies objects seen through it. Such natural gravitational ‘telescopes’ allow astronomers to see extremely distant and faint objects that could otherwise not be seen. The extremely faint galaxy is so far away its visible light has been stretched into infrared wavelengths, making the observations particularly difficult.


"As we were searching for distant galaxies magnified by Abell 2218, we detected a pair of strikingly similar images whose arrangement and colour indicate a very distant object," said astronomer Jean-Paul Kneib (Observatoire Midi-Pyrénées and California Institute of Technology), who is lead author reporting the discovery in a forthcoming article in the Astrophysical Journal.
Analysis of a sequence of Hubble images indicate the object lies between a redshift of 6.6 and 7.1, making it the most distant source currently known. However, long exposures in the optical and infrared taken with spectrographs on the 10-meter Keck telescopes suggests that the object has a redshift towards the upper end of this range, around redshift 7.

Redshift is a measure of how much the wavelengths of light are shifted to longer wavelengths. The greater the shift in wavelength toward the redder regions of the spectrum, the more distant the object is.

"The galaxy we have discovered is extremely faint, and verifying its distance has been an extraordinarily challenging adventure," said Dr. Kneib. "Without the 25 x magnification afforded by the foreground cluster, this early object could simply not have been identified or studied in any detail at all with the present telescopes available. Even with aid of the cosmic lens, the discovery has only been possible by pushing our current observatories to the limits of their capabilities!"

Using the combination of the high resolution of Hubble and the large magnification of the cosmic lens, the astronomers estimate that this object, although very small - only 2,000 light-years across - is forming stars extremely actively. However, two intriguing properties of the new source are the apparent lack of the typically bright hydrogen emission line and its intense ultraviolet light which is much stronger than that seen in star-forming galaxies closer by.

"The properties of this distant source are very exciting because, if verified by further study, they could represent the hallmark of a truly young stellar system that ended the Dark Ages" added Dr. Richard Ellis, Steele Professor of Astronomy at Caltech, and a co-author in the article.

The team is encouraged by the success of their technique and plans to continue the search for more examples by looking through other cosmic lenses in the sky. Hubble’s exceptional resolution makes it ideally suited for such searches.

"Estimating the abundance and characteristic properties of sources at early times is particularly important in understanding how the Universe reionized itself, thus ending the Dark Ages," said Mike Santos, a former Caltech graduate student, now a postdoctoral researcher at the Institute of Astronomy, Cambridge, UK. "The cosmic lens has given us a first glimpse into this important epoch. We are now eager to learn more by finding further examples, although it will no doubt be challenging."

"We are looking at the first evidence of our ancestors on the evolutionary tree of the entire Universe," said Dr. Frederic Chaffee, director of the W. M. Keck Observatory, home to the twin 10-meter Keck telescopes that confirmed the discovery. "Telescopes are virtual time machines, allowing our astronomers to look back to the early history of the cosmos, and these marvellous observations are of the earliest time yet."

Lars Lindberg Christensen | ESA
Further information:
http://www.esa.int/export/esaSC/SEM6DJ1PGQD_exploring_0.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>