Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan is ideal lab for oceanography, meteorology

16.02.2004


After a 7-year interplanetary voyage, NASA’s Cassini spacecraft will reach Saturn this July and begin what promises to be one of the most exciting missions in planetary exploration history.



After years of work, scientists have just completed plans for Cassini’s observations of Saturn’s largest moon, Titan.

"Of course, no battle plan survives contact with the enemy," said Ralph Lorenz, an assistant research scientist at the University of Arizona’s Lunar and Planetary Laboratory in Tucson.


The spacecraft will deploy the European Space Agency’s Huygens probe to Titan for a January 2005 landing. Nearly half the size of Earth, frigid Titan is the only moon in the solar system with a thick atmosphere. Smog has prevented scientists from getting more than a tantalizing hint of what may be on the moon’s amazing surface.

"Titan is a completely new world to us, and what we learn early on will likely make us want to adjust our plans. But we have 44 flybys of Titan in only four years, so we have to have a basic plan to work to."

Scientists have long thought that, given the abundant methane in Titan’s atmosphere, there might be liquid hydrocarbons on Titan. Infrared maps taken by the Hubble Space Telescope and ground-based telescopes show bright and dark regions on Titan’s surface. The maps indicate the dark regions are literally pitch-black, suggesting liquid ethane and methane.

Last year, data from the Arecibo telescope showed there are many regions on Titan that are both fairly radar-dark and very smooth. One explanation is that these areas are seas of methane and ethane. These two compounds, present in natural gas on Earth, are liquid at Titan’s frigid surface temperature, 94 degrees Kelvin (minus 179 degrees Celsius).

Titan will be an outstanding laboratory for oceanography and meteorology, Lorenz predicts.

"Many important oceanographical processes, like the transport of heat from low to high latitudes by ocean currents, or the generation of waves by wind, are known only empirically on Earth," Lorenz said. "If you want to know how big waves get for a given windspeed, you just go out and measure both of them, get a lot of datapoints, and fit a line through them.

"But that’s not the same as understanding the underlying physics and being able to predict how things will be different if circumstances change. By giving us a whole new set of parameters, Titan will really open our understanding of how oceans and climates work."

Cassini/Huygens will answer many questions, among them:
  • Are the winds strong enough to whip up waves that will cut cliffs in the lakesides? Will they form steep beaches, or will the strong tides caused by Saturn’s gravity be a bigger effect, forming wide, shallow tidal flats?
  • How deep are Titan’s seas? This question bears on the history of Titan’s atmosphere, which is the only other significant nitrogen atmosphere in the solar system, apart from the one you’re breathing now.
  • And do the oceans have the same composition everywhere? Just as there are salty seas and freshwater lakes on Earth, some seas on Titan may be more ethane-rich than others.

Lorenz is a member of both the Cassini spacecraft’s radar mapping team and a co-investigator of the Surface Science Package on the Huygens probe. He is talking today (Saturday, Feb. 14) at the press conference, "What Will Titan Be Like?" at the American Association for the Advancement of Science meeting in Seattle.

Lorenz began working on the Huygens project as an engineer for the European Space Agency in 1990, then earned his doctorate from the University of Kent at Canterbury, England, while building one of the probe’s experiments. He joined the University of Arizona in 1994 where he started work on Cassini’s Radar investigation. He is a co-author of the book, "Lifting Titan’s Veil" published in 2002 by Cambridge University Press.

Ralph Lorenz | EurekAlert!
Further information:
http://www.arizona.edu/

More articles from Physics and Astronomy:

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

nachricht Nuclear physicists leap into quantum computing with first simulations of atomic nucleus
24.05.2018 | DOE/Oak Ridge National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>