Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on tiniest particles could have far-reaching effects

16.02.2004


Neutrinos are about the tiniest things in existence, but developing a greater understanding of what they are and how they function is likely to have a huge impact in the next few years.



The subatomic particles, created in the nuclear furnaces of the sun and other stars, have no electrical charge and only recently has it been found that they have any mass at all, yet billions pour through each human body every second with no discernable effect or interaction.

Still, the very slight mass each neutrino possesses is enough for all of them together to be comparable to the mass of all the stars and planets of the universe, said John F. Wilkerson, a University of Washington physicist who is working at the forefront of neutrino research. He will discuss the future of neutrino physics research Sunday during a symposium at the American Association for the Advancement of Science meeting in Seattle.


While neutrino research might seem esoteric to some, Wilkerson believes it has broader impact.

"You can never predict the future of what the spinoffs will be," he said. "We’re trying to have a better understanding of the universe, and because we’re pushing the technology there are some interesting technological spinoffs."

He concedes that current neutrino experiments and ones that follow are unlikely to have much direct impact on most people’s daily lives, but they will bring technological advances. For instance, neutrino science is improving techniques for making clean materials, since the laboratories are among the cleanest places in the world in terms of background radiation.

Inside those labs are neutrino detectors – huge tanks filled with hundreds of thousands of gallons of ultrapure water or other liquid ideal for observing ionizing particle reactions. But those detectors also keep vigil, watching for a star in our galaxy that explodes into a supernova. A sudden burst of neutrinos, lasting less than a minute, can let scientists know of the supernova in time to make astronomical observations.

Technologies developed for neutrino detectors also can be adapted for security needs, such as detecting clandestine nuclear weapons tests or possibly detecting nuclear material being smuggled through a seaport.

Neutrinos come in three types, or flavors: electron, tau and muon. One project in which Wilkerson has played a major role, the Sudbury Neutrino Observatory in Ontario, two years ago provided definitive evidence that not only do neutrinos have mass, but that they change willy-nilly from one flavor to another as they flit through air or matter.

This answered a question that had puzzled scientists for decades – why there seemed to be fewer neutrinos coming from our sun than theory predicted. The answer was that the neutrinos were there, but only one type could be detected. Finding the other types solved that problem, and led to the realization that neutrinos do have mass, contrary to the accepted rules of physics.

"Science, in answering one question, has opened up a whole area of new and interesting questions," Wilkerson said – questions such as what role neutrinos played in the early universe, how stars explode and how those explosions create heavy elements such as copper and lead.

"If we want to understand the way these elements are created, as we are trying to do, there’s no way to do that without understanding neutrinos," he said.

That lends greater importance to an upgrade of the Sudbury experiment that will allow it for the first time to be able to differentiate in real time between types of neutrino reactions. It also shows the significance of an experiment in Japan called KamLAND, which examines the properties of antineutrinos generated by a number of nuclear reactors at Japanese power plants.

Wilkerson believes the work at Sudbury and KamLAND in the next few years will emphasize a growing need for an underground science laboratory in the United States. Currently there are a handful of major dedicated underground labs in the world, but the deepest is less than a mile below the surface and new experiments need depths of perhaps 7,000 feet or more.

There are several proposals to build an underground lab in the United States, including a closed gold mine in South Dakota, beneath Washington state’s Cascade Range and next to an old iron mine in Minnesota. There are many advantages for the U.S. to have an underground lab, Wilkerson said: it would be a boon to education on all levels, would help train a future force of scientists, and would let the work of U.S. scientists be accomplished here, he said.

"There’s been a long history in the last 30 or more years that there have been good ideas in the United States, and they’ve been done at underground labs around the world but not in the United States because we didn’t have a facility," he said. "There’s a real compelling need based on the science, and there are a lot of potential benefits."


For more information, contact Wilkerson at 206-616-2744, 206-685-9061 or jfw@u.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>