Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on tiniest particles could have far-reaching effects

16.02.2004


Neutrinos are about the tiniest things in existence, but developing a greater understanding of what they are and how they function is likely to have a huge impact in the next few years.



The subatomic particles, created in the nuclear furnaces of the sun and other stars, have no electrical charge and only recently has it been found that they have any mass at all, yet billions pour through each human body every second with no discernable effect or interaction.

Still, the very slight mass each neutrino possesses is enough for all of them together to be comparable to the mass of all the stars and planets of the universe, said John F. Wilkerson, a University of Washington physicist who is working at the forefront of neutrino research. He will discuss the future of neutrino physics research Sunday during a symposium at the American Association for the Advancement of Science meeting in Seattle.


While neutrino research might seem esoteric to some, Wilkerson believes it has broader impact.

"You can never predict the future of what the spinoffs will be," he said. "We’re trying to have a better understanding of the universe, and because we’re pushing the technology there are some interesting technological spinoffs."

He concedes that current neutrino experiments and ones that follow are unlikely to have much direct impact on most people’s daily lives, but they will bring technological advances. For instance, neutrino science is improving techniques for making clean materials, since the laboratories are among the cleanest places in the world in terms of background radiation.

Inside those labs are neutrino detectors – huge tanks filled with hundreds of thousands of gallons of ultrapure water or other liquid ideal for observing ionizing particle reactions. But those detectors also keep vigil, watching for a star in our galaxy that explodes into a supernova. A sudden burst of neutrinos, lasting less than a minute, can let scientists know of the supernova in time to make astronomical observations.

Technologies developed for neutrino detectors also can be adapted for security needs, such as detecting clandestine nuclear weapons tests or possibly detecting nuclear material being smuggled through a seaport.

Neutrinos come in three types, or flavors: electron, tau and muon. One project in which Wilkerson has played a major role, the Sudbury Neutrino Observatory in Ontario, two years ago provided definitive evidence that not only do neutrinos have mass, but that they change willy-nilly from one flavor to another as they flit through air or matter.

This answered a question that had puzzled scientists for decades – why there seemed to be fewer neutrinos coming from our sun than theory predicted. The answer was that the neutrinos were there, but only one type could be detected. Finding the other types solved that problem, and led to the realization that neutrinos do have mass, contrary to the accepted rules of physics.

"Science, in answering one question, has opened up a whole area of new and interesting questions," Wilkerson said – questions such as what role neutrinos played in the early universe, how stars explode and how those explosions create heavy elements such as copper and lead.

"If we want to understand the way these elements are created, as we are trying to do, there’s no way to do that without understanding neutrinos," he said.

That lends greater importance to an upgrade of the Sudbury experiment that will allow it for the first time to be able to differentiate in real time between types of neutrino reactions. It also shows the significance of an experiment in Japan called KamLAND, which examines the properties of antineutrinos generated by a number of nuclear reactors at Japanese power plants.

Wilkerson believes the work at Sudbury and KamLAND in the next few years will emphasize a growing need for an underground science laboratory in the United States. Currently there are a handful of major dedicated underground labs in the world, but the deepest is less than a mile below the surface and new experiments need depths of perhaps 7,000 feet or more.

There are several proposals to build an underground lab in the United States, including a closed gold mine in South Dakota, beneath Washington state’s Cascade Range and next to an old iron mine in Minnesota. There are many advantages for the U.S. to have an underground lab, Wilkerson said: it would be a boon to education on all levels, would help train a future force of scientists, and would let the work of U.S. scientists be accomplished here, he said.

"There’s been a long history in the last 30 or more years that there have been good ideas in the United States, and they’ve been done at underground labs around the world but not in the United States because we didn’t have a facility," he said. "There’s a real compelling need based on the science, and there are a lot of potential benefits."


For more information, contact Wilkerson at 206-616-2744, 206-685-9061 or jfw@u.washington.edu

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu/

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>