Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden order found in cuprates may help explain superconductivity

13.02.2004


Like the delicate form of an icicle defying gravity during a spring thaw, patterns emerge in nature when forces compete. Scientists at the University of Illinois at Urbana-Champaign have found a hidden pattern in cuprate (copper-containing) superconductors that may help explain high-temperature superconductivity.




Superconductivity, the complete loss of electrical resistance in some materials, occurs at temperatures near absolute zero. First observed in 1911 by Dutch physicist Heike Kamerlingh Onnes, the mechanism of superconductivity remained unexplained until 1957, when Illinois physicists John Bardeen, Leon Cooper, and J. Robert Schrieffer determined that electrons, normally repulsive, could form pairs and move in concert in superconducting materials below a certain critical temperature.

For more than a decade, scientists have been baffled by superconductivity in the copper oxides, which occurs at liquid-nitrogen temperatures and does not seem to behave according to standard BCS theory. A tantalizing goal, which would have enormous implications for electronics and power distribution, is to achieve superconductivity at room temperature. A large piece of the puzzle has been to understand how the coherent dance of electrons that gives rise to superconductivity changes when the material is heated.


In a paper to appear in the journal Science, as part of the Science Express Web site, on Feb. 12, researchers at Illinois show that when heated, the orderly superconducting dance of electrons is replaced, not by randomness as might be assumed, but by a distinct type of movement in which electrons organize into a checkerboard pattern. The experimental findings imply that the two types of electron organization, coherent motion and spatial organization, are in competition in the copper oxides -- an idea that may break the logjam on the mystery of high-temperature superconductivity.

"Heating a normal superconductor above its critical temperature results in a normal metallic behavior, but heating a high-temperature superconductor above its critical temperature results in a non-metallic state of electrons called the pseudogap state," said physics professor Ali Yazdani, a Willett Faculty Scholar at Illinois and senior author of the paper. "We have examined for the first time the motion of electrons in this mysterious pseudogap state on the nanometer scale."

Yazdani and graduate students Michael Vershinin and Shashank Misra used a scanning tunneling microscope to map electron waves in cuprate superconductors at high temperatures.

"Comparing maps of electron waves in both the superconducting and the pseudogap state, we have found that electrons in the pseudogap state organize into a checkerboard pattern," Yazdani said. "This pattern appears to be the result of competing forces felt by the electrons, such as Coulomb repulsion because of their charge and magnetic interactions resulting from their spins."

Regardless of the specific cause of the local ordering, "our experimental observations provide new constraints on the potential theoretical description of the pseudogap state in the cuprates and how it transforms into superconductivity when we cool the cuprate samples," Yazdani said.

Pattern formation of electron waves in high-temperature copper-oxide superconductors has long been anticipated theoretically, and Illinois physics professor Eduardo Fradkin contributed to the theoretical work. However, the experimental discovery of such pattern formation was made possible by a new generation of STM designed by Yazdani’s group to operate at temperatures above the superconducting transition temperature.

Collaborators on the pattern-formation project also included colleagues at the Central Research Institute of Electric Power Industry in Japan.


The National Science Foundation, Office of Naval Research and the U.S. Department of Energy funded the work.

James E. Kloeppel | UIUC

More articles from Physics and Astronomy:

nachricht Space radiation won't stop NASA's human exploration
18.10.2017 | NASA/Johnson Space Center

nachricht Study shows how water could have flowed on 'cold and icy' ancient Mars
18.10.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>