Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sweet science: Common candies yield physics discovery

13.02.2004


Research using M&Ms sheds light on particle-packing problem


Paul Chaikin, left, professor of physics, and Salvatore Torquato, right, professor of chemistry
The M&M’s are the peanut variety, suitable for snacks, not science.



For most people, a regular lunch of M&M’s and coffee would lead to no good. For Princeton physicist Paul Chaikin and collaborators, it spurred fundamental insights into an age-old problem in mathematics and physics.

Chaikin and Princeton chemist Salvatore Torquato used the candies to investigate the physical and mathematical principles that come into play when particles are poured randomly into a vessel. While seemingly simple, the question of how particles pack together has been a persistent scientific problem for hundreds of years and has implications for fields such as the design of high-density ceramic materials for use in aerospace or other applications.


The researchers discovered that oblate spheroids, the shape of M&M’s Chocolate Candies®, pack surprisingly more densely than regular spheres when poured randomly and shaken. Extending the work with further experiments and sophisticated computer simulations, they found that a related shape, the ellipsoid, packs at random even more densely than the tightest possible, perfectly ordered arrangement of spheres. Previously, scientists did not know that randomly assembled particles could pack so densely.

"It is a startling and wonderful result," said Sidney Nagel, a physicist at the University of Chicago. "One doesn’t normally stop to think about this. If you did, you might have guessed what would happen, but you’d have guessed wrongly."

The researchers published their results in the Feb. 13 issue of Science magazine.

A surprising element of the results is that the small change from sphere to spheroid -- one is just a squashed or stretched version of the other -- produced a major change in the random packing density. When poured randomly, spheres occupy about 64 percent of the space in the container. M&M’s, by contrast, achieve a density of about 68 percent. In non-random packings -- those that are laid out in regular repeating patterns -- changing from sphere to spheroid has no significant effect on the packing density.

"We just stretched a sphere and suddenly things changed dramatically," said Torquato. "I think that is remarkable."

The reason for the effect, the researchers proposed, is that distorted particles act like little levers and pivot when they push into one another. When the particles turn, the cluster becomes unstable and has to pack tighter before becoming jammed. Perfect spheres do not tend to turn and would remain equally stable even if they did.

The study of particle packing dates to the 16th century when physicist and mathematician Johannes Kepler investigated ordered arrangements of spheres. It was not until 1998 that a mathematician proved that the densest possible arrangement of spheres fills 74.04 percent of the total space, as Kepler had predicted. The packing of randomly assembled particles is less well understood.

"There is still a tremendous intellectual puzzle in the way things like M&M’s pack together," said Sir Sam Edwards, a physicist and authority on granular materials at Cambridge University. He said the new result is a "nice step forward" in clarifying the relation between particle shape, packing density and the methods used for pouring and shaking.

Chaikin and Torquato have had a longstanding interest in particle packing, but their work on spheroids stems from Chaikin’s longstanding interest in M&M’s. His students, poking fun at his affection for M&M-fueled lunches, sneaked a 55-gallon drum partly full of the candies into his office. Years later, after developing an apparatus to examine certain properties of sphere packings, he asked an undergraduate student, Evan Variano (now a graduate student at Cornell University), to measure the density of random-packed M&M’s. M&M’s happen to be almost perfect spheroids and are extremely uniform in size and shape, said Chaikin.

"I didn’t believe the results for some time and finally I just did it myself," Chaikin said. "And, of course, Evan was completely right: They packed a lot better." Another student, Ibrahim Cisse, meticulously counted the contact points between the candies by pouring paint through the container and looking for paint-free dots where candies touched.

The researchers then needed to assure themselves that the candies were not somehow assuming an ordered, crystalline arrangement in the center of the container. At the University Medical Center at Princeton, they did an MRI scan of the container and proved the M&M’s were oriented randomly.

To more fully understand the particle behavior, Torquato and his student Aleksandar Donev developed a computer simulation that allowed them to test any shape, from a flattened M&M-like shape to a sphere to an elongated cigar-like shape. The computer model yielded a further surprise when they stretched the M&M shape so it looked elliptical from the top as well as from the side (like an almond M&M). That shape, an ellipsoid, achieved a random packed density of nearly 74 percent (higher in subsequent studies).

"That blew us away," said Chaikin. "Nobody had ever gotten random packings anywhere near crystalline packings, and this is above."

Random packings of spheroids and ellipsoids also have greater numbers of contact points with their neighboring particles, the researchers found. Their evidence suggests that the number of contact points varies in proportion to the number of directions the particle can move or pivot.

Chaikin, Torquato, Variano, Cisse and Donev co-wrote the Science paper with former undergraduate David Sachs, visiting research collaborator Frank Stillinger and Robert Connelly, a professor of mathematics at Cornell.

The researchers plan to continue their investigations, which could ultimately prove important to any field involving granular materials, from molecules and cells to grain in a silo. Materials scientists, for example, make high-performance ceramics by fusing powders made of tiny particles. A more tightly packed powder with many contact points could yield a less porous ceramic, the researchers said.

The researchers also believe the work may shed light on an important class of substances that combine properties of liquids and solids. These materials, known as "glasses," consist of randomly assembled molecules, as in liquids, but are hard. A glass is like a liquid whose molecules become "jammed" into solid state. "The precise connection between jamming and disorder is a deep and open question," Torquato said.

"To me, it’s remarkable that you can take this simple system with common candies and probe one of the deepest problems in condensed matter physics," Torquato added.

In the meantime, Torquato and Chaikin expect to do very well in Valentine’s Day contests to guess how many candies are in a container. You can too: If the candies are chocolate M&M’s, estimate the volume of the container in cubic centimeters and multiply by 0.68. Divide by 0.636 cubic centimeters, the volume of a single M&M candy, and you have the answer.


M&M is a registered trademark of Mars Inc. The company has no financial ties to the research, although it did donate 125 pounds of almond M&M’s to Chaikin. The work was supported by the National Science Foundation, the National Aeronautics and Space Administration and the Petroleum Research Fund.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu/Siteware/WebAnnounce.Princeton_Headlines.shtml#1

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>